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The design of artificial systems is sometimes inspired 
by biological systems. This represents an additional 
motivation to seriously consider the constraints on bio-
logical systems. Because artificial systems are not subject 
to many of the constraints discussed here, an imple-
mentation that works well in biology may be suboptimal 
in an artificial system, and thus engineers must be 
careful not to draw the wrong lessons from biological 
systems (Stafford, 2010). 

This chapter reviews the key constraints on neural 
systems and their implications for sensory processing. 
Organisms have evolved intriguing ways to cope with 
some of these constraints. Such cases are generally 
clearer in sensory neuroscience than in other branches 
of neuroscience, simply because the function of sensory 
systems is particularly transparent. For this reason, 
sensory systems are a good setting for investigating how 
neural systems evolve in the context of constraints. 

Evolutionary inheritance 

Neural systems in related species have a similar organi-
zation. This is true even in species that inhabit very 
different ecological niches. For example, the relative 
size of major brain divisions is remarkably constant 
across mammals. A meta-analysis of 131 species showed 
that the volumes of all major brain divisions (including 
the medulla, hippocampus, cerebellum, striatum, and 
neocortex) were highly systematically related to total 
brain volume, except the olfactory bulb. Different 
brain divisions showed different relationships to brain 
volume-in particular, neocortex grew particularly 
steeply with increasing volume-but for all brain divi-
sions there was a systematic dependence on brain 
volume that extended to species with widely varying 
body sizes and lifestyles. Notably, this analysis included 
species as diverse as simians, prosimians, insectivores, 
and bats. This result argues that the expansion of brain 
volume resulting from natural selection for any behav-
ioral trait is constrained to be a coordinated growth of 
the entire nonolfactory brain (Finlay & Darlington, 
1995). This finding raises a provocative question: might 
there be excess signaling capacity in some brain divi-
sions, as a by-product of a strong pressure to expand 
other divisions? 
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Whereas the size of an entire brain division (e.g., 
neocortex) appears to be highly constrained, there is 
relatively more flexibility in the regionalization of brain 
divisions (e.g., the division of neocortex into sensory 
regions). Even so, there is evidence that regionalization 
is also subject to constraints. For example, all mammals 
share a common set of primary and secondary sensory 
cortical regions. This includes visual areas VI and V2, 
somatosensory areas SI and S2, and auditory area AI, 
as defined by cytoarchitectonic landmarks and affer-
ent/ efferent connections. Even the relative positions of 
these regions are grossly conserved in all mammals. 
Because mammals inhabit a wide diversity of ecological 
niches, from treetops to fields to oceans, this conserved 
pattern of regionalization suggests that the neocortex 
is evolutionarily constrained to a particular architecture 
(Krubitzer & Kahn, 2003). 

More evidence of constraints upon regionalization 
comes from studies of animals that have completely lost 
one sensory modality, and yet still preserve a vestige of 
the corresponding regions of neocortex and thalamus. 
For example, the subterranean mole rat Spalax ehren­
berghi is completely blind: its eyes are entirely covered 
with skin and fur, and recordings from cortex show no 
evidence of visually evoked potentials. The only func-
tion for the retina in this species is to entrain its circa-
dian clock, which occurs via projections to the 
superchiasmatic nucleus. Nevertheless, the retina still 
sends sparse projections to all the visual areas that nor-
mally process form and motion in other mammals, 
including the superior colliculus and the lateral genicu-
late nucleus (LGN) of the thalamus. Moreover, the 
LGN still sends a topographic projection to occipital 
cortex, where VI is normally located (Cooper, Herbin, 
& Nevo, I993). Although these regions are severely 
reduced in size, their persistence in this species argues 
that the regionalization of thalamus and cortex is con-
strained by evolutionary inheritance. 

Despite sharing conserved features, homologous 
neural structures can dramatically switch functions. 
This idea is illustrated by the case of the blind mole rat, 
where large parts of the LGN and occipital cortex are 
taken over by auditory inputs (Bronchti et al., 2002; 
Heil, Bronchti, Wollberg, & Scheich, I99I). This illus-
trates the principle that inherited constraints are typi-
cally incorporated into functional neural systems. 

Developmental programs 

CANALIZATION Because certain developmental pro-
grams are robust to genetic variation, they tend to 
persist across evolutionary time, and they channel 
neural systems into stereotyped architectures. These 
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programs can be likened to a canal that channels 
progress of a waterway along a stereotyped route; 
this phenomenon has been termed canalization. 
idea that neural systems are constrained by these 
opmental canals is closely linked to the idea of 
ited evolutionary constraints (see above). Indeed, ~u·~u:,,:_ 
is no real distinction between a developmental 
straint of this sort and an evolutionary constraint: 
opmental programs are the means by which evoluti 
constraints are imprinted on an individual organism. 

An example of a developmental canal is the 
of neurogenesis in different divisions of the m<lmm<lli<Jm 
brain. This sequence is stereotyped across species, 
gesting it is difficult to alter by genetic variation, p 
due to some robustness of the master regulatory 
networks that control it. The sequence of neur10Q"c~nt~sis 
is important because it affects the relative volume of 
ferent brain divisions. The later the onset of neuro 
esis in a particular brain division, the larger the po 
pool of neural precursors in that division. Delaying 
onset of neurogenesis in one brain division sh 
therefore have cascading effects on the volume of 
later-developing brain divisions. Indeed, as we 
expect, the brain divisions where neurogenesis o 
last are those that have enlarged disproportionately 
large-brained species. The implication is that disp 
tionate enlargement is constrained to occur prefe 
tially in these brain divisions, as compared to other 
(Finlay & Darlington, I995; Finlay, Darlington, & 
tro, 200 I). If so, then the disproportionately large 
of the human neocortex (and its associated 
regio'ns) may have arisen initially as a by-product of 
constraint on brain development. 

DEVELOPMENTAL NorsE In addition to being limited 
developmental canals, neural systems are also limited 
developmental noise. A clear example is the 
olfactory bulb. This structure is divided into -I,OOO 
crete neuropil compartments called glomeruli. 
glomerulus is uniquely associated with a single o 
receptor neuron wre, corresponding to a single 
receptor (figure 24.I). On a coarse spatial scale, the 
tively spatial location of each glomerulus is compl 
stereotyped. On a fine spatial scale, however, there 
notable imprecision: the relative positions of adj 
glomeruli are often swapped. Notably, imprecision 
the anterior-posterior axis is significantly larger 
along the medial-lateral axis (Soucy, Albeanu, Fan 
Murthy, & Meister, 2009). This is particularly in teres 
because anterior-posterior position is specified by 
unusual axon guidance mechanism that depends 
the intrinsic properties of odorant receptors 
selves (Imai, Suzuki, & Sakano, 2006). This suggests 
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Glomerulus 

1 Independent sampling 
2 Compressive nonlinearity, 

histogram equalization 
3 Normalization 
4 Divergence, reconvergence 

Circuit organization of the olfactory system. 
architecture of the olfactory system provides several 

of how neural systems can respond to internal con-
. Each olfactory receptor neuron (ORN) generally 

a single odorant receptor, and all the ORNs that 
the same receptor converge on the same compart-

ofneuropil ("glomerulus," dashed line) in the olfactory 
(in vertebrates) or antennallobe (in insects). This sche-
depicts only two glomeruli, but in reality there are on 

order of 1,000 glomeruli (in vertebrates) and 50 in 
The spatial placement of each glomerulus is 

stereotyped but can vary on a fine spatial scale, likely 
stochastic developmental noise. There are on the 

of 10,000 ORNs per glomerulus in vertebrates, and 
40 ORNs per glomerulus in Drosophila. In Drosophila, all 
ORNs synapse precisely on every second-order neuron, 

about 3 second-order neurons per glomerulus. (Verte-
have 10-100 second-order neurons per glomerulus.) 
in Drosophila have shown that several features of this 

can be viewed as a response to a constraint (see text): 
ORNs provide independent samples of the olfactory 

(2) within a glomerulus, the transfer function from 
to second-order neurons takes the form of a compres-

nonlinearity; (3) inhibitory local interneurons mediate 
inhibition between glomeruli, thereby normalizing the 

of population activity across odor stimuli; ( 4) sister 
neurons carry largely redundant signals, and 

are thought to reconverge onto the same third-order 

in glomerular position is due mainly to limita-
in the precision of the hardwired developmental 

· that specify glomerular position, rather 
variations across animals in odor-evoked neural 

Consistent with this idea, a mutation that elimi-
odor-evoked neural activity has relatively little 
on the glomerular map (Lin et al., 2000; Zheng, 

Bozza, Rodriguez, & Mombaerts, 2000). 

As this example illustrates, developmental mecha-
nisms can be noisy. The origin of developmental noise 
is stochasticity in signal transduction and gene expres-
sion. Stochasticity at the single-cell level reflects the low 
copy number of some proteins within cells (McAdams 
& Arkin, 1997). This type of noise places limits on the 
theoretical maximum rate of information transmission 
in biochemical signaling networks, including the bio-
chemical signals that instruct neural development. 
Recent studies using information-theoretic analyses 
have formalized this intuition (Cheong, Rhee, Wang, 
Nemenman, & Levchenko, 2011). 

The effect of developmental noise can be mitigated 
by using multiple mechanisms having partly redundant 
functions. For example, retinal ganglion cell axons 
must project in an orderly fashion to retino-recipient 
brain regions, forming retinotopic maps where axonal 
position is systematically related to retinal position. 
These retinotopic maps are specified by multiple ligand-
receptor systems, and some of these have partly redun-
dant functions, such that multiple mechanisms must be 
genetically disrupted in order to reveal any substantial 
phenotypic defect (Feldheim et al., 2000). 

In spite of such compensatory strategies, develop-
mental noise is still likely to limit the function of neural 
systems. For example, intrinsic imprecision in glomeru-
lar targeting may limit the pattern of horizontal con-
nectivity between glomeruli, which could limit the 
computations performed in the olfactory bulb (Murthy, 
2011). It will be interesting in future to learn whether 
some features of neural circuit architecture might be 
adaptive responses to stochasticity in single-cell devel-
opmental programs. 

Metabolic constraints 

ORIGINS OF METABOLIC CosTs For many species, 
neural systems represent a major metabolic burden. In 
humans, about 20% of the resting metabolic rate is 
consumed by the brain (Rolfe & Brown, 1997). Neurons 
consume more energy when they are active, but even 
inactive neurons impose a substantial energy burden. 
When neurons run out of energy, the consequences are 
swift: a human subject falls unconscious only 7 seconds 
after circulation to the neck is blocked (Ames, 2000). 
For these reasons, metabolic demands strongly con-
strain the architecture of neural systems. This idea has 
been explored in several comprehensive reviews 
(Laughlin, 2001; Niven & Laughlin, 2008), which also 
serve as primers on how neural systems respond to 
competing constraints. 

The highest metabolic costs are imposed by the need 
to maintain steep ionic gradients across the plasma 
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membrane. This alone accounts for about half of the 
energy consumed by neural systems (Ames, 2000). 
Ionic gradients are dissipated by transmembrane cur-
rents, and so there is a price associated with the chan-
nels that carry these currents. Among all transmembrane 
currents, the most costly are the currents associated 
with action potentials, followed by synaptic currents 
and leak currents. By comparison, the cost of recycling 
synaptic vesicles is low (Attwell & Laughlin, 2001). 

ARCHITECTURES THAT MINIMIZE METABOLIC COSTS 
Metabolic constraints shape neural architecture in 
several ways. To begin with, they create an incentive to 
match the intrinsic properties of neurons to the signals 
they must carry. A nice example is provided by the 
potassium conductances of fly photoreceptors. Visual 
signals fluctuate rapidly, and, to capture these fluctua-
tions, photoreceptors should have fast membrane time 
constants. However, there is a metabolic cost to the high 
leak conductances that would be required to create a 
fast membrane (Niven, Anderson, & Laughlin, 2007; 
Niven & Laughlin, 2008). The solution is to match the 
temporal bandwidth of the membrane to the character-
istics of input signals. Phototransduction is slow at low 
light levels and fast at higher light levels; accordingly, 
at rest the membrane acts as a low-pass filter, but when 
depolarized it acts as a high-pass filter. Moreover, fast-
flying flies have faster membrane time constants, 
whereas slow-flying flies have slower membrane time 
constants (Laughlin, 1994). 

Moreover, metabolic costs favor architectures where 
, connected neurons are located near each other in 

space. For a typical neuron, most of the metabolic cost 
associated with a single spike is incurred by axonal cur-
rents, with a smaller contribution from dendritic and 
somatic currents (Attwell & Laughlin, 2001). The cost 
of axonal currents grows with axon length, and so axons 
should be as short as possible. This means that there is 
a strong pressure for connected neurons to be spatially 
close, and indeed most connectivity in neural systems is 
local rather than long range. This is sometimes called 
the wiring economy principle ( Chklovskii & Koulakov, 
2004). 

In addition, metabolic costs create an incentive to 
keep redundancy low (Barlow, 1961, 2001). Indeed, 
metabolic costs would argue that redundancy should be 
minimized both in space and in time (i.e., both across 
neurons and within neurons). There are several ways 
that neural systems can do this. First, redundancy can 
be minimized by using an array of sensors that under-
samples the sensory world. This is exemplified by the 
photoreceptor array in both vertebrates and inverte-
brates, which under-samples the optical image; this may 
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related to the very high metabolic costs incurred 
these cells (Laughlin, 1994; Snyder, Bossomaier 
Hughes, 1986). Second, redundancy can also' 
reduced by cell-intrinsic mechanisms of adaptation 
gain control, which tend to reduce redundancy 
time. Cells possess a variety of these intrinsic 
feedback mechanisms (Shapley & Enroth-Cugell, 1 
Wark, Lundstrom, & Fair hall, 2007). Third, red 
can be reduced by lateral inhibition among neurons 
have correlated activity. This type of lateral inhi 
also represents a form of negative feedback. The 
feature here is that information in other neurons 
used to make a prediction about what level of gain 
needed. This has been called a predictive coding 
ture. Finally, redundancy is reduced simply by virtue 
the fact that most neurons have a nonlinear 
threshold, because any nonlinearity tends to red 
linear correlations (Pitkow & Meister, 2012). 

Electrical noise 

ORIGINS OF NorsE As electrical signals 
through neural systems, they are continually c 
nated by noise that arises in neurons themselves. 
represents a major intrinsic constraint on sensory 
cessing. The origin of neural noise lies in s 
microscopic processes. Chief among these are i 
nel gating and synaptic vesicle release. The 
created by these stochastic microscopic events can 
be amplified by the nonlinear properties of 
(Faisal, Selen, & Wolpert, 2008). 

Intuitively, one might think that channel noise is 
a major problem for most neurons, because 
should average out across many channels. 
this is not true-even for neurons that contain 
large numbers of channels (White, Rubinstein, & 
2000). There are three reasons for this result. First, 
signal-to-noise ratio ( SNR) of total conductance 
only slowly with increasing channel number, u~""-"'"''''"' 

is proportional to the square root of the number 
channels (N). Given the metabolic costs of· · 
N, this limits the ability of a cell to overcome noise 
increasing N Second, for a channel that is gated 
depolarization, the probability of opening is low 
hyperpolarized potentials, and so the SNR of total 
ductance can be relatively poor. Third, individual 
nels are not independent: a stochastic opening of 
voltage-gated Na+ channel will tend to depolarize 
cell, thereby increasing the probability that another 
channel will open. 

Synaptic noise arises primarily from the fact that 
release of synaptic vesicles is stochastic (del Cas 
Katz, 1954). At many synapses, the mean num 
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vesicles is low, and so trial-to-trial variability in 
ber of released vesicles is quite high. This, 
with variability in the amount of neurotrans-

vesicle, can create large trial-to-trial fluctua-
the size of the postsynaptic response to a single 

· spike (Bekkers & Clements, 1999; Sargent, 
Nielsen, DiGregorio, & Silver, 2005). 

, channel noise and synaptic noise inject a 
stochastic element into neural activity. This 

a limitation on the precision of stimulus encod-
it causes identical presentations of the 

""'~~"''""to elicit different neural responses. More-
mean membrane potential of many neurons 

is just below their spike threshold; neural noise 
tend to push these neurons above their thresh-
that they fire spikes" even in the absence of a 

Finally, it should be kept in mind that neural 
injected at every layer of a sensory processing 

and so each central neuron inherits noise from 
layers. 

THAT MINIMIZE THE EFFECTS OF 

Given these considerations, neural systems are 
pressure to minimize the negative effects of 

One strategy is to pool redundant signals from 
,en•aetu sensors. This is exemplified by the first 

the olfactory system (figure 24.1), where each 
n-<)rcter neuron pools input from many olfactory 

neurons, all of which express the same odorant 
and all of which project their axons to the 

glomerulus. In the fruit fly Drosophila melanogaster, 

receptor neurons that express the same 
receptor (called "sister ORNs") are known to 
quite precisely onto each and every second-

neuron in their target glomerulus, and to make 
of a rather uniform strength. All sister ORNs 
same noise level, and their noise is indepen-

so this architecture ought to maximize the SNR 
neurons. Indeed, the SNR of second-

neurons is better than that of their cognate 
despite the fact that principal neurons are 
to additional synaptic and channel noise (Bhan-

Olsen, Schlief, Gouwens, & Wilson, 2007; Kazama 
2008, 2009). There are several second-order 

in each glomerulus, and because they pool 
from exactly the same sister ORNs, they carry 
redundant signals. Interestingly, there is evi-
that they synapse onto some of the same third-

ns (Marin, Jefferis, Komiyama, Zhu, & Luo, 
Wang, & Axel, 2002). This arrangement 

allow third-order neurons to average out some 
· e that arises de novo in second-order neurons. 
there is substantial redundancy in this circuit 

at two successive layers, in spite of its metabolic costs. 
Note also the peculiar architecture of this circuit (figure 
24.1): signals first converge (all sister ORNs synapse 
onto each sister second-order neuron), then diverge (in 
the form of redundant sister second-order neurons), 
and then reconverge (as sister second-order neurons 
wire onto the same third-order neuron). This architec-
ture suggests the system is under strong pressure to 
minimize the maladaptive effects of noise. A similar 
architecture has been proposed for the transmission of 
visual information between retina, thalamus, and visual 
cortex (Alonso, Usrey, & Reid, 2001). 

Another strategy is to impose a filter that selectively 
discards noise, retaining the signal. This is possible only 
if the properties of signal and noise are distinctively 
different. For example, the phototransduction cascade 
downstream from rhodopsin is spontaneously active, 
which generates continuous voltage noise in photore-
ceptors. Absorption of a photon generates a predictable 
discrete "bump" of activity in the phototransduction 
cascade, which is distinctively different from continu-
ous noise. Accordingly, the synapse between rod photo-
receptors and bipolar cells is configured to impose a 
threshold on rod output, such that continuous noise 
cannot pass, but (many) single-photon responses can 
pass (Field & Rieke, 2002). 

Yet another strategy is to distribute signals as uni-
formly as possible within the available coding space, 
ensuring that all codes are used with equal frequency. 
This strategy is sometimes known as histogram equaliza­

tion, because it produces a flat histogram of response 
probabilities. The classic example of this phenomenon 
is the contrast-response function of second-order fly 
visual neurons, which is nicely matched to the distribu-
tion of contrasts in natural visual scenes. As a conse-
quence, these neurons use each response level with 
equal probability (Laughlin, 1981). Importantly, histo-
gram equalization cannot help combat existing noise, 
but it helps immunize signals from noise that is added 
later: when signals are well separated in coding space, 
adding noise has a minimal effect on their discrim-
inability. Another example of histogram equalization 
occurs in the Drosophila olfactory system. Most odor 
responses of olfactory receptor neurons fall within the 
lower part of the dynamic range of these neurons. This 
might reflect a metabolic constraint on average firing 
rate, especially as ORNs are numerous, outnumbering 
second-order neurons by -10:1. Weak ORN responses 
are then preferentially boosted as they are transmitted 
to second-order neurons. As a consequence, second-
order neurons use each response level with roughly 
equal probability. Because second-order neurons are 
less numerous, the relative pressure of metabolic 
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constraints and noise constraints may be different in 
these neurons. 

Constraints on neural electronics 

In principle, single neurons can perform a vast array of 
operations on their synaptic inputs. Biophysicists tend 
to emphasize this viewpoint. The fanciest single-neuron 
operations rely on complex dendritic morphologies, 
the specific spatial placement of synaptic inputs onto 
dendritic trees, and well-tuned voltage-gated conduc-
tances in dendrites. There is ample evidence that 
neurons can achieve these things, although their roles 
in vivo are necessarily difficult to demonstrate (London 
& Hausser, 2005; Silver, 2010). 

Nonetheless, the operations that a neuron can 
perform are also constrained by the nature of cellular 
electronics. Many of these constraints can be mitigated, 
but sometimes the solution would be costly and so is 
not worth the price. In short, single-neuron operations 
are not arbitrarily flexible. In some cases, this creates 
incentives for neural circuits to evolve architectures that 
can compensate for the limitations of single neurons. 

LIMITATIONS ON SPEED Several factors limit the speed 
of neural processing. As we have seen, fast membrane 
time constants are metabolically costly, and this may be 
why many neurons have relatively slow membrane time 
constants. In addition, dendritic cable filtering tends to 
slow synaptic potentials as they travel to the spike initia-
tion zone. In particular, axonal conduction delays can 
be as large as 100 milliseconds in long axons, much 
longer than the typical delay involved in synaptic trans-
mission (150-400 microseconds; Sabatini & Regehr, 
1999). Axonal conduction speed can be increased by 
increasing axon diameter, but because volume grows 
with the square of the diameter, this strategy consumes 
valuable space (Swadlow, 2000). 

Notably, many organisms have evolved neural subsys-
tems with unusual cellular specializations for speed. In 
invertebrates, these subsystems are characterized by 
large-diameter axons and electrical synapses, and 
they mediate escape reflexes (Allen, Godenschwege, 
Tanouye, & Phelan, 2006; Faulkes, 2008). In the brains 
of many mammals, the distribution of axon diameters 
is right-skewed, and the largest axons are always myelin-
ated, which further increases speed. This subpopula-
tion of particularly large axons has been proposed to 
serve brain functions that require fast conduction speed 
(Perge, Koch, Miller, Sterling, & Balasubramanian, 
2009; Wang et al., 2008). The fact that these specializa-
tions for speed are only found in a small fraction of 
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neurons is consistent with the idea that they 
high price. 

LIMITATIONS ON DYNAMIC RANGE Spike 
vesicular release rates cannot be negative. This 
constraint, because many sensory systems must 
fluctuations above and below some mean 
of a stimulus (e.g., light). In principle, neural 
might respond to this constraint by setting 
rates high, allowing the same neuron to e 
increases and decreases about the mean. H 
basal firing rates are metabolically costly. An 
is to create opponent populations of neurons 
opposite stimulus preferences. Classic cases 
ON-OFF neurons and color opponent neurons 
retina, but opponent neurons can also be 
mechanosensory, auditory, and thermosensory 
(Jacobs, Miller, & Aldworth, 2008; Ma, 2010; 
et al., 2009). 

Firing rates also cannot be arbitrarily large. 
over, it seems that there can be strong con 
the firing rate of a neuron averaged over 
scales. The evidence for this idea comes from the 
vation that firing rate distributions are 
distributed in visual cortical neurons. This is 
because information theory predicts that 
tributions should actually be flat, since this sho 
imize the rate of information transmission (see 
Exponentially distributed firing rates are 
with the existence of a constraint on mean firing 
together with a pressure to maximize the rate of 
mation transmission within that constraint 
et al., 1997). Given the energy budget of the 
brain, it has been estimated that the average n 
constrained to fire at rates around 1-7Hz (Wang 
2008). A constraint on firing rates will co11St1ran; 
number of distinguishable messages that an 
send, because noise limits the number of 
firing rates that can be reliably distinguished from 
other. 

Finally, synapses cannot be arbitrarily strong. 
passive dendrite, increasing the conductance 
synapse brings diminishing marginal returns 
postsynaptic voltage response, because a large 
synaptic conductance will simply shunt 
rents. Dendritic voltage-gated conductances 
course amplify synaptic potentials, but this also 
cost. Specifically, if a dendrite is endowed with 
conductances, this will increase not only the 
the synapse in question, but also the barrage of 
noise arising from spontaneous presynaptic 
other synapses. As a consequence, there may be 
increase in the ability of the synapse in ques 
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tic cell (London, Schreibman, 
& Segev, 2002). 

ns limit the dynamic range of 
These limits create an incentive 

to implement some form of 
control. This allows a neuron to 

its sensitivity based on the current 
the sensory environment, so that 

small inputs fall within its dynamic 
2007). These mechanisms are ubiq-

also come at a cost: because the signals 
tion or gain will tend to be noisy, 

"~/·h,., • .-. .. ~m based on these signals will 
noise (Dunn & Rieke, 2008). More-

control changes the relationship 
output, it necessarily creates ambi-

us (Fairhall, Lewen, Bialek, & de 
venrncK, 2001) . 

ING FROM LINEAR SuMMATION At 
approximation, the dendritic trees of 

a rather simple operation on 
'""'"ll-''-4'-"'' Inputs are weighted and summed 

then the neuron fires roughly in 
sum above some threshold. This sim-
' of course, does not capture all that 
capable of. However, it encapsulates 
that all neurons possess. 

neurons integrate their inputs in this 
tion creates a constraint on what cat-

neurons can perform. Imagine we 
a neuron that responds only to a 

of stimuli. This neuron can receive N 
The free parameters we have are the 

with each input synapse, as well as 
that neuron. It is possible to find a set 

that generates the desired solution 
can draw a hyperplane in N-dimen-

separates target stimuli from off-target 
1958). In other words, stimulus 

must be linearly separable. An idealized 
of this type is called a perceptron. 

are even more constrained than 
This is because synaptic weights 

cannot be arbitrarily large. In addition, 
that can be tuned to confer the 

may be constrained to be nonnega-
are synaptic inputs from excitatory 

several ways that neural systems can 
. se~arability under these strong con-
It Is helpful to begin with a high-

·--·.uu.~u"' representation. This is because 

the likelihood that there is a separating hyperplane 
increases with the number of synaptic inputs N (Cover, 
1965). For example, it has been pointed out that high 
dimensionality is a characteristic property of olfactory 
encoding (Itskov & Abbott, 2008). Odors are encoded 
combinatorially by the activity of many odorant recep-
tors having diverse odor tuning, where each receptor 
binds multiple odors, and each odor binds multiple 
receptors. As the number of odorant receptors (N) 
grows, so does the potential selectivity of higher-order 
olfactory neurons that linearly sum the activity of differ-
ent receptors. 

Second, there is a special case of the linear separation 
problem where normalization and a compressive nonlinear­

ity can be helpful. This special case can be termed 
sparse recoding. Imagine that we want to create an 
array of neurons where each neuron responds to only 
one stimulus out of many, and each stimulus activates 
at least one neuron. To achieve this, each neuron needs 
synaptic input weights and a threshold that confers 
specificity for a single stimulus. The problem of finding 
these values amounts to the problem of drawing a line 
(or in high-dimensional space, a hyperplane) that sepa-
rates each individual stimulus from all other stimuli 
(figure 24.2). Sparse codes are typical of many sensory 
brain regions, so this is a biologically relevant special 
case of the linear separability problem. 

In this situation, separability can be improved by nor­

malization. Normalization involves dividing activity in 
individual neurons by the summed activity of many 
neurons in the same brain region. This operation 
occurs in a wide range of sensory modalities and organ-
isms (Carandini & Heeger, 2012). Normalization facili-
tates sparse recoding, because it tends to equalize the 
total population firing rates evoked by different stimuli. 
In geometric terms, if we imagine each stimulus as a 
point inN-dimensional space, then normalization tends 
to move all points toward the surface of a hypersphere 
in that space, making it is easier to find a line or a 
hyperplane that separates each stimulus from the rest 
(figure 24.2). An example of normalization has been 
described in the Drosophila olfactory system, where 
input from individual olfactory receptor neurons is 
divided by the total activity of all olfactory receptor 
neurons. This is accomplished via lateral inhibition 
from local interneurons (figure 24.1). In simulations 
that were tightly constrained by data, this operation 
makes it easier to construct linear classifiers that respond 
sparsely and selectively to single odors (Luo, Axel, & 
Abbott, 2010; Olsen, Bhandawat, & Wilson, 2010). Nor-
malization has been proposed to serve a similar func-
tion in visual cortical areas (DiCarlo & Cox, 2007; 
Olshausen & Field, 2005). 
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FIGURE 24.2 Compression, normalization, and linear sepa-
rability. (A) Consider a sensory representation in multiple 
dimensions, with each dimension corresponding to a coding 
channel (a neuron or a chain of neurons). For concreteness, 
we might imagine the two-dimensional space in this schematic 
corresponds to two different types of olfactory receptor 
neurons. Every odor stimulus is a point in this space. A subset 
of points are highlighted for comparison across panels (black 
circles). (B) A compressive nonlinearity transforms signals 
within each channel (black curve). Divisive normalization 
adjusts the steepness of this nonlinearity according to the 
total input to both channels. Namely, when total activity is 
high, the nonlinearity is less steep (gray curve; Carandini & 
Heeger, 2012). Different stimuli will therefore fall on differ-
ent curves, because they produce different amounts of total 
input to both channels. Curves in this schematic are fit to data 
recorded from Drosophila olfactory neurons in vivo (Olsen 
et al., 2010). (C) A steep compressive nonlinearity (black 
curve in B) preferentially boosts weak input signals (compare 
to A). (D) Normalization tends to equalize the distance of all 
representations from the origin. As a consequence, stimuli 
tend to lie near the surface of a circle. The vector w corre-
sponds to the weights on the two input channels that define 
a linear separation (dashed line) between one highlighted 
symbol and the other symbols. Note that, in this example, we 
can separate each highlighted symbol from the rest using only 
nonnegative weights. In the Drosophila olfactory system, there 
are 50 coding channels (glomeruli), as compared to the two 
channels in this schematic. This system has a large capacity 
for generating sparse and selective representations, and com-
pression and normalization together improve this capacity 
(Luo et al., 2010; Olsen et al., 2010). 
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In addition, sparse recoding is also facilitated by 
compressive nonlinearity in feedforward excitation. 
intuition here is similar. A compressive nonlin 
tends to make a responsive neuron fire ata fixed 
(i.e., its saturated response level). This operation 
duces total population firing rates that are rela 
equal for different stimuli, as compared with a seen 
where there is no compressive nonlinearity. 
drawing an example from the Drosophila o 
system, it is notable that there is a compressive n 
earity in the relationship between the odor responses 
of olfactory receptor neurons and postsynaptic second-
order neurons. Implementing this nonlinearity in data-
driven simulations makes it easier to construct linear 
classifiers that respond sparsely and selectively to single 
odors (figure 24.2; Luo et al., 2010; Olsen et al., 2010). 
It is perhaps nonintuitive that equalizing firing rates 
(via compressive nonlinearity and normalization) can 
improve separability. The key is that these operations 
occur in a high-dimensional coding space. 

Conclusion 

To be a film director, in the words of Orson Welles, 
is simply to "preside over accidents." This could stand 
as a description of how a nervous system evolves and 
develops-accident by accident. Neural systems are 
subject to constraints, and this influences which random 
variations are passed on to successive generations. As 
we have seen, the history of which accidents survive 
becomes another constraint on neural system architec-
ture, in the form of the organism's evolutionary inheri-
tance and developmental programs. 

The central argument of this chapter is that internal 
constraints leave their imprint on the architecture of 
neural systems. Because these constraints are ubiqui-
tous, they can potentially explain why some architec-
tures are so common. Understanding how this might 
occur will require a comparative approach that embraces 
a variety of sensory modalities and organisms. 

Thinking about constra~nts is more important than 
ever before, because the field of experimental neuro-
science is undergoing a revolution in techniques. New 
techniques allow us to precisely perturb neural activity, 
and to test how this affects perception and behavior. In 
practice, one often begins with a specific element of a 
neural system (e.g., a cell type) and one searches for 
behaviors that fall apart when this element is per-
turbed. This search assumes we will understand the 
function of each element by identifying the behaviors 
that rely on it. However, the nature of the behavioral 
task is only one pressure that drives the evolution of 
neural systems: equally important is the pressure to 

The Cognitive Neurosciences, 5th ed., 2014, MIT Press, edited by Michael S. Gazzaniga and George R. Mangun



internal constraints. Understanding these 
may inspire more sophisticated experi-

and interpretations. 
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