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Neural and behavioral mechanisms of olfactory perception
Rachel I Wilson
Recent in vivo and in vitro studies have challenged existing

models of olfactory processing in the vertebrate olfactory bulb

and insect antennal lobe. Whereas lateral connectivity between

olfactory glomeruli was previously thought to form a dense,

topographically organized inhibitory surround, new evidence

suggests that lateral connections may be sparse,

nontopographic, and partly excitatory. Other recent studies

highlight the role of active sensing (sniffing) in shaping odor-

evoked neural activity and perception.
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Introduction
Sensory perception depends on the way sensory signals

are transformed by neural circuits in the central nervous

system. Moreover, our earliest perceptions of a stimulus

often modify the way we interact with that stimulus, and

this behavioral reaction in turn modifies central repres-

entations and ultimately our perceptions.

These events are relatively well understood for some

sensory modalities — especially vision — and much less

well understood in olfaction. Olfaction is an important

topic in its own right because it has a crucial importance in

the lives of many organisms. Moreover, by comparing

olfactory processing with processing in other sensory

modalities, we are more likely to grasp which principles

are fundamental to sensory processing in general, and

which are peculiar to a specific modality.

This review will discuss recent advances in central olfac-

tory processing. The first part of the review will focus on

circuits and computations in the first brain region in the

olfactory system. The second part will examine how odors

are actively sampled by organisms, and how odor-evoked
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changes in sampling behavior affect the way the brain

responds to odors.

Circuits and computations in the olfactory
bulb and antennal lobe
The vertebrate olfactory bulb — like its insect analog, the

antennal lobe — is the first brain region in the olfactory

system. In most species, this region is divided into dis-

crete glomeruli, each corresponding to a distinct type of

olfactory receptor neuron (ORN) [1]. Glomeruli are also

laterally interconnected by local interneurons.

In the classical view, an olfactory bulb mitral/tufted (M/

T) cell is excited by direct ORN input to the glomerulus

innervated by its apical dendrite, and indirectly inhibited

by input to neighboring glomeruli [2,3]. If we treat the

glomerular array as the ‘input space’ of a M/T cell, then

the classical M/T receptive field would comprise a small

excitatory center surrounded by a much larger inhibitory

annulus [4]. Nearby glomeruli are thought to have similar

odor tuning, so lateral interactions would thus occur

preferentially between neurons receiving correlated

ORN input.

In the past several years, new results have challenged this

model. In addition, new data from the insect antennal

lobe have revealed surprising similarities and differences

between these brain regions.

Lateral inhibition may be sparse
One prediction of the classical model is that, on average,

the number of stimuli that inhibit an olfactory bulb M/T

cell should be larger than the number of stimuli that

excite it. This would be expected if the inhibitory

surround is dense, and if it occupies a larger region than

the excitatory center [4]. However, when M/T cell

receptive fields were mapped much more systematically

than in previous studies, using odor concentrations that

activate only sparse excitatory responses in M/T cells,

the inhibitory input evoked by these stimuli was also

sparse [5�]. This result suggests that a M/T cell does not

receive lateral inhibition from a large number of glomer-

uli — in other words, lateral inhibitory networks are

unlikely to be very dense. In future, a combination of

functional imaging and electrophysiological recording

should resolve this apparent discrepancy with earlier

studies.

Lateral connections are not limited to nearest
neighbors
In the classical view, only nearest-neighbor glomeruli

inhibit one another. However, the concept of strictly
www.sciencedirect.com
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‘topographic’ lateral inhibition has been challenged by a

new anatomical study [6�]. A retrograde transsynaptic

viral tracer was injected focally into a small region of

the rat olfactory bulb comprising a handful of glomeruli.

The classical model would predict that the connections

onto these glomeruli should arise from a dense annulus

that falls off with distance from the injection site. Con-

trary to this prediction, the retrograde tracer was trans-

ported into a sparse population of glomeruli distributed

widely throughout the entire olfactory bulb. This result is

consistent with the idea that lateral connectivity is sparse,

and also implies that lateral connectivity does not vary in a

graded fashion with distance.

Challenging the importance of chemotopic
lateral connectivity
In the classical model, glomeruli are arranged on the

surface of the bulb so that glomeruli with similar odor

selectivity are located close to one another. Currently,

there is evidence in favor of this type of ‘chemotopy’, but

there is also evidence against it (reviewed in [7]). What is

needed is a systematic mapping of the odor selectivity of

many spatially localized glomeruli using a large set of

chemically diverse odors.

If the spatial position of glomeruli is not strongly chemo-

topic, what alternative rules might govern these connec-

tions? Glomeruli with similar odor tuning might still be

preferentially connected, but these networks would have

to be long-range and sparse rather than local and dense

[6�]. Alternatively, lateral connections might be specific,

but governed by a different logic (e.g. connected glomer-

uli might be tuned to chemically dissimilar odors that

tend to co-occur in natural environments). Finally, lateral

connections could be rather nonspecific, perhaps even

global. In this scenario, each glomerulus would receive an

inhibitory signal which reflects the total level of activity in

all glomeruli. The consequences of uniform, global inter-

glomerular inhibition have been explored in a recent

theoretical study [7]. It was found that this type of net-

work can act as a form of gain control, tending to keep M/

T cell activity within a limited dynamic range. Moreover,

it tends to decorrelate the output of different glomeruli.

Thus, even nonspecific connectivity can still be compu-

tationally useful.

There is new experimental evidence for this type of

uniform, global lateral inhibition in the Drosophila anten-

nal lobe [8]. Lateral inhibition onto two different glo-

meruli was measured in response to a variety of odors.

The lateral inhibitory signals received by the two glo-

meruli were found to be quite similar, though the ORNs

corresponding to these two glomeruli have rather differ-

ent odor preferences. Moreover, the amount of lateral

inhibition evoked by an odor was proportional to the

total number of ORN spikes triggered by that odor.

These results suggest that lateral inhibitory connections
www.sciencedirect.com
in the Drosophila antennal lobe are probably not highly

specific.

Lateral connectivity is dynamic
Another twist to the classical model is that interglomer-

ular connections in the olfactory bulb can be dynamic. A

recent in vitro study in mouse olfactory bulb slices used

calcium imaging to study how a subclass of GABAergic

interneurons (granule cells) is recruited by feedforward

excitatory stimuli. Simultaneous electrical stimulation of

two glomeruli was found to recruit 50% more granule cells

than the sum of the number of cells recruited by either

glomerulus alone [9]. This finding predicts that the

inhibitory coupling strength between two glomeruli

should vary supralinearly as a function of their combined

activity, and this prediction was borne out in paired

recordings from mitral cells. Taken together, these results

emphasize the importance of viewing the olfactory bulb

and antennal lobe as dynamical systems where small

changes in the pattern of ORN input can produce dis-

proportionately large changes in the activity of the net-

work [10].

Lateral excitation
In the classical view, lateral connections between glomer-

uli are strictly inhibitory (e.g. [3], but see [11]). However,

several laboratories have now demonstrated excitatory

connections between glomeruli in the Drosophila anten-

nal lobe [12�,13�,14�]. Lateral excitatory connections are

nontopographic, and even glomeruli on opposite sides of

the antennal lobe can excite each other [12�]. A novel

class of excitatory local interneurons has been proposed to

mediate lateral excitatory connections in the Drosophila
antennal lobe [14�]. In other insects, the lateral excitation

in the antennal lobe may be mediated by direct connec-

tions between the dendrites of multiglomerular projec-

tion neurons [11].

Although lateral excitatory connections between glomer-

uli have also been proposed in the vertebrate olfactory

bulb, there is new evidence against this idea. Two in vitro
studies recorded from pairs of mouse M/T cells and

always failed to find excitatory connections between cells

in different glomeruli. By contrast, excitatory connections

were frequent between M/T cells in the same glomerulus

[15,16]. This may be a fundamental difference between

vertebrates and insects. Nevertheless, it appears that

lateral excitation coexists with lateral inhibition in some

olfactory circuits, and suggests that the classical picture of

a purely inhibitory surround is oversimplified.

Intraglomerular processing
Lateral interglomerular connections are not the only

circuits that produce a transformation of odor representa-

tions. Intraglomerular circuits can also produce a substan-

tial change in the way odors are represented as they pass

from ORNs to second-order neurons.
Current Opinion in Neurobiology 2008, 18:408–412
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An important feature of the glomerular microcircuit is the

convergence of many ORNs onto each glomerulus. This

convergence should allow second-order neurons to aver-

age signals across many independent inputs, and thus to

improve the signal-to-noise ratio of their odor responses as

compared to ORNs. This has now been demonstrated

directly in the Drosophila antennal lobe [17�]. Moreover, if

ORN output synapses are strong, then this high conver-

gence ratio could make individual postsynaptic neurons

more sensitive to odors than a corresponding individual

ORN. Consistent with this idea, ORNs in the Drosophila
antennal lobe make powerful synapses onto postsynaptic

projection neurons [18]. As a result, weak ORN odor

responses are amplified in postsynaptic cells [17�,19].

Strong ORN responses are not amplified to the same

degree, and this may be partly because of strong short-

term depression at this synapse [18].

Each glomerulus contains the processes of many

GABAergic interneurons. In the vertebrate olfactory

bulb, these GABAergic interneurons are termed peri-

glomerular (PG) cells. PG cells mediate intraglomerular

dendro-dendritic inhibition of M/T cells and other PG

cells, in addition to dendro-axonic inhibition of ORNs

[20]. Pharmacologically blocking this circuit boosts both

basal activity and odor-evoked activity in the mouse

olfactory bulb [21,22]. This implies that intraglomerular

presynaptic inhibition tonically regulates the gain of

ORN!M/T synapses.

Interestingly, presynaptic inhibition of ORN axon

terminals in the mouse olfactory bulb is strictly intra-

glomerular, and is not recruited by interglomerular

cross-talk ([21,22], but see [23]). Thus, presynaptic

inhibition at ORN axon terminals represents form of

gain control strictly limited to an individual glomerulus.

Lateral cross-talk between glomeruli seems to occur

only at a deeper layer of the olfactory bulb, via a

separate class of GABAergic interneurons (granule

cells) that are morphologically distinct from PG cells

[24]. This contrasts with the situation in the Drosophila
antennal lobe, where presynaptic inhibition at ORN

axon terminals is a major pathway for lateral cross-talk

between glomeruli [8].

Wake up and sniff the coffee: interactions
between behavior and perception
Most animals actively control the flow of air over their

ORNs, generally via a repetitive sampling behavior

[25–29]. Terrestrial vertebrates accomplish this by

sniffing, insects and crustaceans by flicking their anten-

nae, and snakes by flicking their tongues. Insects can

also repetitively sample odors by wing-fanning air

across their antennae, or by flying back and forth across

an odor plume. There is currently an intense interest in

how these periodic sampling behaviors affect the way
Current Opinion in Neurobiology 2008, 18:408–412
that odors are represented in the brain, and conversely

how odor perception modifies sampling behavior.

Perception and reaction can occur on the first
odor sample
Odor detection can occur rapidly, on the timescale of a

single odor sample. Conversely, odor detection can trigger

a rapid modulation of sampling behavior. For example, a

typical human subject can detect an odor in just one sniff,

and can modify airflow through the nose within 160 ms of

sniff onset [30]. A free-flying fruit fly can rapidly detect an

odor on its first encounter with a plume, and will rapidly

reorient its flight trajectory within 250 ms of the plume

encounter [31].

Not only odor detection, but also some odor discrimi-

nation can be performed on this fast timescale. For

example, trained rodents can discriminate between a pair

of similar odors on the basis of a single sniff [32], though

some discriminations can benefit from multiple sniffs

[33,34]. Rats respond to a novel odor with faster sniffing,

whereas a rat presented with a familiar odor will maintain

its basal sniff rate. In some contexts, this difference in

sniff rate can be detected within 140 ms of the onset of

the first sniff of the test odor [35].

Neural codes on the timescale of a sniff
Many M/T cells fire spikes with odor-specific temporal

patterns that repeat once per sniff cycle [36]. These sniff-

cycle patterns reflect both the staggered recruitment of

ORN input to different glomeruli during each sniff [37]

and also the dynamics of circuitry within the bulb [38].

Because these patterns are odor-specific, they potentially

contain information that could be used by downstream

neurons to identify the odor stimulus. This raises the

question of what timescales within these temporal pat-

terns are most informative, and how this compares to the

speed of behavioral reactions.

Recordings from large ensembles of M/T cells in the

mouse olfactory bulb have shed new light on this question

[36]. A single sniff-cycle was found to be sufficient to

permit a computer algorithm to accurately discriminate

between several test stimuli on the basis of the ensemble

neural response. Moreover, there was a substantial

amount of information in the latency to each cell’s first

spike after sniff onset. This type of ‘first-spike’ code

would be a particularly rapid form of temporal coding

[39,40] that might help account for the rapid behavioral

reactions observed in some tasks [30,32–35]. However,

temporal information on this fine time timescale was not

strictly necessary for accurate odor discrimination: good

performance could also be obtained by averaging each

cell’s spike rate over the entire sniff cycle [36]. Thus,

there is useful information present at a variety of time-

scales within the sniff cycle, including fast timescales that

could support rapid behavioral responses.
www.sciencedirect.com
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Odor-evoked changes in sniffing affect
central odor codes
When an animal adjusts its sampling behavior in

response to an odor, this reaction has the potential to

modify the way that odors are represented in the brain.

A recent study addressed this issue at the very first

stage of central processing, using calcium imaging of

ORN axon terminals in awake behaving rats [41��].
When a rat begins sniffing at high frequency in

response to a novel odor, this was found to strongly

attenuate ORN input to the bulb. Thus, the function of

high-frequency sniffing is evidently not to increase the

amount of ORN input to the brain. Rather, the function

of high-frequency sniffing might be to promote adap-

tation to a background odor, thus readying the olfactory

system to perceive new odors. Future experiments

combining psychophysics with neurophysiology should

shed more light on this issue.

Expectation and reward shape odor
representations at an early stage
Odor sampling behavior reflects not only current per-

ceptions, but also expectations. For example, rats

expecting an odor increase their sniff rate in anticipation

of that stimulus, and also in anticipation of a water

reward [42�]. This may be one reason why M/T cell

activity is modulated by seemingly non-olfactory aspects

of a behavioral task, such as the mere expectation of an

odor and reward delivery [43,44�]. Descending inputs

from higher brain regions are another mechanism con-

tributing to context-dependent modulation of odor

responses in the olfactory bulb. These descending

inputs synapse preferentially onto inhibitory granule

cells, where they are likely to modulate the strength

and/or spatial extent of lateral inhibition [45,46]. Con-

sistent with this idea, behavioral context modulates the

ratio of excitatory to inhibitory odor responses in rat M/T

cells [47], as well as the strength of odor-evoked field

potential oscillations in the rat olfactory bulb [48].

Pharmacological manipulations will help clarify which

aspects of olfactory transformations arise from descend-

ing modulatory inputs, and when these inputs are active

[49].

Conclusions
Taken together, these studies challenge — or at least

complicate — the classical view of the olfactory bulb and

antennal lobe. Lateral connections between glomeruli in

the vertebrate bulb seem to be surprisingly sparse, and

may be nontopographic. In the antennal lobe, lateral

connections between glomeruli include excitatory as

well as inhibitory connections. It is also increasingly clear

that active sampling (sniffing and flicking) has a key role

in shaping the brain’s responses to odors. Olfactory

perception rapidly modifies sampling behavior, and this

in turn modulates neural activity in the brain in surprising

ways.
www.sciencedirect.com
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