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SUMMARY
Gain control is a process that adjusts a system’s sensitivity when input levels change. Neural systems contain
multiple mechanisms of gain control, but we do not understandwhy somanymechanisms are needed or how
they interact. Here, we investigate these questions in the Drosophila antennal lobe, where we identify several
types of inhibitory interneurons with specialized gain control functions. We find that some interneurons are
nonspiking, with compartmentalized calcium signals, and they specialize in intra-glomerular gain control.
Conversely, we find that other interneurons are recruited by strong and widespread network input; they
specialize in global presynaptic gain control. Using computational modeling and optogenetic perturbations,
we show how thesemechanisms can work together to improve stimulus discrimination while alsominimizing
temporal distortions in network activity. Our results demonstrate how the robustness of neural network func-
tion can be increased by interactions among diverse and specialized mechanisms of gain control.
INTRODUCTION

Gain control decreases a system’s gain when input is high, while

allowing the gain to increase when the input is low. In general,

this is achieved by an element that integrates the system’s

response over time and uses the integrated signal to attenuate

the system’s input or the system’s response (Figure 1A). The in-

tensity of natural sensory stimuli can vary over many orders of

magnitude, requiring sensory systems to employ some form of

gain control or adaptation to resolve features across the entire

range of intensity scales.1,2

Interestingly, it seems that most sensory systems have multi-

ple nested mechanisms for gain control (Figure 1B). For

example, in the retina, photoreceptors implement gain control

with regard to luminance, whereas local interneurons implement

gain control with regard to spatial contrast. These mechanisms

are specialized to control gain with regard to different stimulus

features.4 Theoretical work has demonstrated that a sensory

system can transmit stimuli over a wider range of timescales

when it contains multiple nested mechanisms of gain control.5

However, we still do not fully understand how different gain con-

trol mechanisms work together within the same sensory system.

In the Drosophila antennal lobe, gain control is important

because the relevant stimuli (odors) can vary over a vast dynamic

range.6 The key cell types in this network are olfactory receptor

neurons (ORNs), projection neurons (PNs), and local neurons

(LNs) (Figure 1C). There are multiple sites of gain control in this

system. For example, adaptation reduces olfactory transduction

in ORNs,7 whereas short-term synaptic depression at ORN /

PN synapses reduces PN responses to high ORN firing rates.8

Additionally, LNs inhibit ORN axon terminals and PN den-

drites.9,10 These LNs are morphologically and physiologically
Current Biology 33, 1–12, D
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diverse,10–19 but it is not known how these specializations might

promote effective gain control.

Recently, the detailed circuitry of the antennal lobe has been

captured in several large-scale electron microscopy (EM) data-

sets,20–23 four major classes of LNs (Patchy, Broad, Regional,

and Sparse).3 Notably, the majority of interneuron output synap-

ses arise from just two of these classes, Patchy and Broad.3

Each Patchy cell arborizes in a random handful of olfactory

glomeruli, with the Patchy population collectively tiling the entire

network. By contrast, each Broad LN arborizes in most or all

glomeruli. Thus, both Patchy and Broad LNs are positioned to

control the gain of the entire network, but we do not know why

their morphologies should be so different nor whether they are

specialized for distinct functions. Whatever their specializations,

this diversity is likely to be fundamental to olfactory processing,

given that the vertebrate olfactory bulb also contains a wide

variety of inhibitory interneurons.24–27

In this study, we set out to investigate the functional speciali-

zations of specific Patchy and Broad cells in the Drosophila

antennal lobe. We find that different stimulus features preferen-

tially recruit different types of inhibitory local interneurons, which

perform gain control at different sites.We show how this network

architecture can minimize temporal distortions while improving

odor discrimination. These results shed light on the general

problem of how network output can be adaptively regulated by

multiple feedback loops chained together in series.

RESULTS

Identifying LNs positioned to perform gain control
Our goal in this study was to understand the functional special-

izations of antennal lobe LNs. Previous functional studies10–19
ecember 4, 2023 ª 2023 The Authors. Published by Elsevier Inc. 1
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Figure 1. Multiple mechanisms of gain control
(A) Gain control (or adaptation) involves an integrator that accumulates the

system’s response over time. This integrated value is used to decrease the

system’s response or the system’s input.

(B) Many sensory systems contain multiple mechanisms of gain control, which

can function as negative feedback loops chained together in series.

(C) Each glomerulus in the Drosophila antennal lobe is targeted by a single

ORN type. Postsynaptic PNs can have a dendrite in one glomerulus (uPNs) or

multiple glomeruli (mPNs). Inhibitory local neurons are diverse, but most LN

output synapses arise from Patchy or Broad LNs. Each Patchy cell arborizes in

a handful of olfactory glomeruli, whereas each Broad LN arborizes in most

glomeruli. Patchy and Broad LNs can be anatomically classified into several

types.3
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have been hindered by the lack of highly selective genetic re-

agents; hence, we set out to find genetic lines selective for

particular LN types. We identified lines targeting LNs and used

the multi-color flip-out methodology28 to sparsely label individ-

ual cells within each candidate line of interest. By comparing in-

dividual cells with morphologies from EM connectome data,3,20

we identified four specific Gal4 lines targeting different types of

antennal lobe LNs (Figures 2A and 2B).

The first line is highly specific for Patchy cells.15 Patchy cells

comprise three subtypes—LN2P_a, LN2P_b, and LN2P_c.

Each subtype completely tiles the antennal lobe, and individual

cells within a subtype do not overlap. The line we identified

must target one Patchy subtype because it also tiles the antennal

lobe without overlap (Figure S1) We provisionally refer to this as

LN2P_x and will later provide evidence that it likely targets the

LN2P_c subtype. The second Gal4 line we identified targets

Full cells (LN2F_b), a type of Broad LN with an unusually dense

or full morphology that fills the entire antennal lobe except

for glomerulus VL1. The third line targets LN1, another type of

Broad LN; this cell type selectively innervates the core of each
2 Current Biology 33, 1–12, December 4, 2023
glomerulus.14,29,30 The last line targets two types of LNs, LN2S

(a Broad type named for its star-like primary branch point) and

LN2R (a Regional type that resembles LN2S). We used auto-

mated image classification algorithms31 to confirm that all these

cells in the connectome are GABAergic, as expected. All of these

LNs are also axonless, with pre- and post-synaptic sites inter-

mingled throughout their dendritic arbor.3

Notably, connectome data indicate that Patchy and Full cells

receive most of their synaptic input from ORNs and PNs

(Figures 2C and S1); hence, they should be excited by odor stim-

uli. By contrast, LN1 and LN2S/R receive more input from LNs. In

these latter cell types, we might predict that odor stimuli would

drive inhibition or else balanced excitation and inhibition.

To test these predictions, we used in vivo patch-clamp record-

ings and two-photon calcium imaging to monitor LN responses

to different concentrations of the same broadly activating odor

(2-heptanone).32 Like most odor stimuli, 2-heptanone recruits

few ORN spikes at low concentrations but many ORN spikes

at high concentrations.6 Note that most LNs are relatively un-

tuned to odor identity10,13–18; hence, we focus here on odor con-

centration rather than odor identity.

We found that increasing odor concentration caused modest

increases in depolarization and calcium in Patchy cells

(Figures 2D, 2E, and S2). Meanwhile, increasing odor concentra-

tion caused robust increases in depolarization and calcium in

Full cells. By contrast, for LN1 and LN2S/R, we found that indi-

vidual cells could be excited or inhibited by odor (Figures 2D,

2E, and S2), but in many cells, responses did not change much

with increasing odor concentration, as we would expect if excit-

atory and inhibitory inputs to these cells are nearly balanced.

These results support our functional predictions based on con-

nectome data.

Together, these results imply that only a subset of LNs are

positioned to perform gain control—namely, the LNs that

respond to increasing odor intensity with increasing depolari-

zation. Only these LNs would be positioned to reduce the

gain of the network when odor stimuli are intense. By contrast,

the LNs that are inhibited by increasing odor concentration are

likely performing some other function, e.g., to suppress back-

ground noise in the network when odor stimuli are absent.

These results motivated us to focus specifically on Patchy

and Full cells as likely mediators of gain control. Neither of

these cell types has been physiologically characterized by pre-

vious studies.

LNs specialized for intra-glomerular inhibition
Next, we focused on Patchy cells. The discrete tufts within each

Patchy cell are separated by long, thin, tortuous processes

(Figures 3A, S1, and S3), which should create barriers to voltage

propagation and calcium diffusion. Their morphology suggests

that these cells are functionally compartmentalized.

Interestingly, in our electrophysiological recordings from

Patchy cells, we never observed spikes in response to either

odor stimuli (Figure 3B) or direct current injection (Figure 3C).

In this regard, these LNs are unusual, as most Drosophila

antennal lobe LNs are spiking neurons.11,12,15–19 The use of

graded potentials in these cells might promote compartmental-

ized signaling because it would allow each tuft to operate

independently.
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Figure 2. Identifying LNs positioned to perform gain control

(A) Four LNs reconstructed from the hemibrain EMdataset. Arrowheads point to somata. Three cells are Broad LNs, whereas one is a Patchy cell (LN2P_x). Dorsal

is up; lateral is left.

(B) One example cell from each of four selective Gal4 lines (maximum z-projections of confocal stacks). Arrowheads point to somata. LN2S/R targets a mixture of

LN2S and LN2R. Number of labeled cells per hemisphere (mean ± SEM) is 2.29 ± 0.19 (LN2F_b), 5 ± 0.24 (LN2P_x), 16.5 ± 0.66 (LN1, NP1227-Gal4), 14 ± 0.58

(LN1, R70A09-Gal4), and 8.56 ± 0.18 (LN2S).

(C) Fraction presynaptic inputs to each LN type arising from LNs, PNs, and ORNs. Almost all LNs are inhibitory, whereas ORNs and PNs are excitatory.

(D) Change in membrane voltage versus odor concentration (2-heptanone dilution in paraffin oil). Thin lines are individual cells, thick lines are the mean across

cells. Number of cells tested for each concentration (10�6, 10�4, 10�2): n = 10, 10, 10 (LN2P_x), n = 6, 14, 17 (LN2F_b), n = 29, 29, 29 (LN1), and n = 10, 10, 10

(LN2S/R).

(E) Normalized change in GCaMP7f fluorescence (DF/F) versus odor concentration (2-heptanone). Thin lines are individual cells, and thick lines are the mean

across cells. Number of cells tested for each concentration (10�6, 10�4, 10�2): n = 8, 8, 7 (LN2P_x), n = 5, 6, 8 (LN2F_b), n = 5, 5, 4 (LN1), and n = 5, 5, 5 (LN2S/R).

DF/F is calculated over the entire antennal lobe neuropil.

See also Figures S1 and S2.
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To test the idea that Patchy cells are more compartmentalized

than broad LNs, we examined the spatial spread of calcium sig-

nals in these cells. Here, we selected a stimulus that is relatively

selective for a single ORN type—a low concentration of farnesol,

which selectively targets DC3 ORNs.33 We observed that this

‘‘private odor’’ evoked robust calcium signals in Patchy cells,

and these signals were largely confined to glomerulus DC3

(Figures 3D, 3E, and S3). By contrast, in Full cells, farnesol-
evoked calcium signals were not so confined to DC3

(Figures 3D, 3E, and S3). Given that farnesol is relatively selective

for DC3 ORNs, this result implies that there is more spatial

spread of calcium signals in Full cells, compared with Patchy

cells.

Next, we tested an odor stimulus that drives high firing rates in

many ORN types—a high concentration of 2-heptanone. DC3

ORNs show essentially no response to even the highest
Current Biology 33, 1–12, December 4, 2023 3
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Figure 3. LNs specialized for intra-glomerular inhibition

(A) Morphology of a Patchy cell reconstructed from the hemibrain EM dataset. Arrowheads point to narrow, tortuous neurites.

(B) Example Patchy cell odor response, recorded in whole-cell current clamp mode (2-heptanone 10�2, horizontal bars show timing of 2-s odor pulses). An

example response from a Full cell is shown for comparison.

(C) Example Patchy cell response to depolarizing current pulses (3-s pulses of 50, 75, 100, and 125 pA). An example response from a Full cell is shown for

comparison.

(D) Odor-evoked changes in fluorescence in Patchy and Full cells (shown here as DF rather than DF/F because baseline fluorescence F was very small and noisy

at some regions of these images). Outlines show glomerulus DC3 and the entire antennal lobe (AL). Farnesol (10�4) is a private odor for DC3 ORNs, whereas

2-heptanone (10�2) drives strong activity in a broad population of ORNs. We also tested a blend of both odor stimuli.

(E) Responses to farnesol (10�4) in two spatial zones, DC3 and the rest of the antennal lobe. Each set of connected points is one experiment. There is a significant

interaction between cell type and spatial zone (two-way ANOVA, p = 0.035), indicating that Patchy cells are more highly compartmentalized.

(F) Comparing responses to all three stimuli in DC3. Each set of connected points is one experiment. In Patchy cells, the response to the blend is significantly

smaller than the response to farnesol alone (p = 0.034, linear mixed-effects model). In Full cells, the response to the blend is significantly larger than the response

to farnesol alone (p = 5.29 3 10�8, linear mixed-effects model).

(G) Blend response O sum of the component responses, in DC3. Symbols are single experiments, lines are means. This ratio is significantly smaller for Patchy

cells than for Full cells (p = 6.04 3 10�6, two-sample t test).

See also Figure S3.
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concentrations of 2-heptanone,33 and we found that DC3 PNs

had similarly small responses to this odor (Figure 6). We also

found that Patchy cells also showed almost no response to

2-heptanone in glomerulus DC3, consistent with our prediction

that the individual dendritic tufts of a Patchy cell are compart-

mentalized, and hence, they should inherit the tuning of the

PNs in their home glomerulus (Figures 3D and 3F). By contrast,

we found that Full cells had robust calcium responses

to 2-heptanone in DC3, supporting the conclusion that there

is a spatial spread of voltage and/or calcium in these cells

(Figures 3D and 3F).

Interestingly, we found that high concentrations of 2-

heptanone suppressed the farnesol responses of Patchy cells

in glomerulus DC3 (Figures 3D, 3F, and 3G). This may be due

in part to the fact that a high concentration of 2-heptanone
4 Current Biology 33, 1–12, December 4, 2023
recruits intense activity in Full cells, driving widespread inhibi-

tion of ORN axon terminals, thereby decreasing ORN and PN

activity in most glomeruli, and decreasing the excitatory drive

onto Patchy cells. Moreover, some Patchy cells (subtype

LN2P_c) receive substantial direct inhibitory input from Full

cells (LN2F_b) (Figure 4A).

We observed a different result in Full cells. Here, adding

2-heptanone to farnesol boosted calcium signals in glomerulus

DC3, rather than suppressing them (Figures 3D, 3F, and 3G).

Both farnesol and 2-heptanone produced activity that spreads

throughout the arbors of Full cells, and the effects of these two

stimuli were approximately additive.

In summary, we find that Patchy cells are compartmentalized,

whereas Full cells are much less compartmentalized. Patchy cell

tufts are most effectively recruited by private odors. Meanwhile,
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Figure 4. LNs specialized for pre- or post-

synaptic gain control

(A) Fraction of input synapses and output synapses

arising from different cell types, for both LN2F_b

and LN2P_c cells. Other LNs comprise all other LN

types, including other subtypes of Patchy cells.

Miscellaneous cells include extrinsic inputs from

other brain regions. Note that Full cells are strongly

reciprocally connected with ORNs, whereas

LN2P_c cells are reciprocally connected with PNs,

with some ORN input as well.

(B) Model. The input to the model is a train of odor

pulses. ORN firing rate is a smoothed version of this

input. ORN firing rate is translated into ORN

neurotransmitter release, which depends on the

size of the available synaptic vesicle pool. ORN

release depletes the available pool. ORNs excite

PNs and LNs. LNpre suppresses ORN release,

whereas LNpost suppresses PN firing rate.

(C) With both LNs present, model parameters are fit

to minimize the mean squared error between PN

data and model output (R2 = 0.849). Removing

LNpost has no effect on PN dynamics, whereas

removing LNpre primarily disinhibits the transient

PN onset response and the response to higher-

frequency odor pulse trains.
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Full cells are most effectively recruited by odors that elicit wide-

spread input to many glomeruli.

LNs specialized for pre- or post-synaptic gain control
Notably, different LNs in this network select different targets. For

example, Full cells (LN2F_b) preferentially target ORN axon ter-

minals and receive most of their excitatory input fromORNs (Fig-

ure 4A). By contrast, other LN types preferentially target PNs and

receive most of their excitatory input from PNs; this group of LNs

includes LN2P_c, a Patchy cell type (Figures 4A and S1).

To predict the functional consequences of these specializa-

tions, we built a computational model comprising ORNs, PNs,

and two LN types, one recurrently connected with ORNs (LNpre)

and the other recurrently connected with PNs (LNpost). These two

LN types are designed to capture the basic features of LN2F_b

and LN2P_c cells, respectively. For simplicity, this model fo-

cuses on one glomerulus, and each cell type is represented by

one network node (Figure 4B). We added presynaptic inhibition

to this model, following published works.34 Specifically, we en-

dowed model ORN synapses with short-term depression that

grows with p,35,36 and we modeled presynaptic inhibition as a

decrease in p.19 Meanwhile, we modeled postsynaptic inhibition

as a subtractive effect on PN activity. We fit the parameters of

this model to our electrophysiological data, and we then used

this model to investigate how PN dynamics change when we

perturb each LN type.

Initially, with both LN types present, we confirmed that this

model generates realistic dynamics (Figure 4C) and that PNs

are able to track odor concentration fluctuations over a wide

range of temporal frequencies. When we turned off presynaptic

inhibition, PN responses showed more temporal distortion—

specifically, more prominent onset transients and more severe
rundown during a pulse train. This is because in the absence

of presynaptic inhibition, ORN release probability (p) was fixed

at a high value, producing stronger short-term depression and

thus more high-pass temporal filtering. When we instead turned

off postsynaptic inhibition, PN dynamics were similar to what we

observed in the intact model network, although response gain

was increased.

In summary, short-term synaptic depression produces tempo-

ral distortion in the form of high-pass filtering. Ourmodel predicts

that presynaptic inhibition mitigates this distortion while also

further controlling gain. Our model predicts that postsynaptic in-

hibition contributes to gain control, but without mitigating tem-

poral distortion. We next set out to test these predictions

experimentally.

Using optogenetic stimulation to test model predictions
To target individual LN types for stimulation, we expressed

CsChrimson37 under the control of our selective Gal4 lines. We

then used light to optogenetically stimulate these cells while

recording the odor responses of PNs in glomerulus DC3. Here,

we used the private odor for DC3 (a low concentration of farne-

sol), and we synchronized light and odor so that light boosted

odor-evoked depolarization in these LNs. We delivered odor

pulses at three different frequencies and tested six different light

intensities. For comparison, we also performed an equivalent

experiment on the model.

We found that optogenetically activating Patchy cells inhibited

PN odor responses with only relatively small changes to PN

response dynamics (Figures 5A and 5B) or frequency tuning

(Figures 5C and 5D). This resembles the effect of activating

LNpost in the model. At the highest optogenetic stimulus inten-

sities, activation of Patchy cells began to affect PN response
Current Biology 33, 1–12, December 4, 2023 5
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Figure 5. Using optogenetic stimulation to test model predictions

(A) Data: optogenetic activation of LN2P_x cells suppresses DC3 PN responses to a private odor (farnesol 10�5). Firing rates were averaged across recorded PNs

(n = 14) for each optostimulation level, ranging from 0.00 to 11.50 mW. Odor pulse frequencies were 0.28, 2.5, and 5 Hz. Optostimulation was synchronized with

odor valve openings (black horizontal lines).

(B) Model PN firing rates with boosted activity in LNpost. Zero added activity represents the default model shown in Figure 4C. Values show activity injected at each

time step (e.g., 2.5 Hz); due to the integrative properties of the LN, this resulted in an LN firing rate increase that was larger than these values. Activity injections

were synchronized with the simulated odor pulse.

(C) Model: PN firing rate versus odor pulse frequency. Boosting activity in LNpost has little effect on PN frequency tuning. Firing rates here (and in all frequency

tuning curves) are averaged over the entire period of the pulse train.

(D) Data: normalized PN firing rate at each stimulus frequency, for increasing optogenetic activation of LN2P_x cells. Thin lines are individual experiments, thick

lines are mean. Activation of LN2P_x cells has little effect on PN frequency tuning. Two-way analysis of covariance (ANCOVA) shows a significant effect of

stimulus frequency (factor, p = 1.83 10�33) and light intensity (covariate, p = 5.33 10�21), but with no significant interaction (p = 0.093); moreover, Tukey post hoc

tests showed no significant differences in the slope of the light/response relationship for different stimulus frequencies (2.5 versus 0.28 Hz, p = 0.452; 2.5 versus

5 Hz, p = 0.073; 0.28 versus 5 Hz, p = 0.586).

(E) Same as (A) but for optogenetic activation of LN2F_b cells (n = 14).

(legend continued on next page)
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dynamics, but this effect was small. Thus, we provisionally

conclude that our Patchy transgenic line drives Gal4 expression

in LN2P_c cells, which primarily target PNs rather than ORNs

(Figure 4A).

Conversely, we found that optogenetically activating Full cells

inhibited PN odor responses with dramatic changes to PN

response dynamics, making the PN response a more faithful

copy of the odor stimulus (Figures 5E and 5F) by diminishing

band-pass temporal filtering (Figures 5G and 5H). This result in-

dicates that Full cells effectively reduce the temporal distortion

arising from short-term synaptic depression, consistent with

theoretical predictions.19 This outcome resembles the effect of

activating LNpre in the model, which makes sense, given that

Full cells make many output synapses to ORN terminals.

Next, we tested the effect of optogenetically suppressing Full

cells, using the inhibitory opsin GtACR1.38,39 In these experi-

ments, we used a strong odor (2-heptanone 10�2) to produce

a strong excitatory drive to the network. We found that suppres-

sion of Full cells disinhibited PN responses at odor onset (Fig-

ure 6A), consistent with model predictions (Figure 6B); it also

sharpened PN frequency tuning (Figure 6C), again consistent

with model predictions (Figure 6D). Notably, these results are

the opposite of what we observed when we optogenetically acti-

vated Full cells (Figures 5E–5H). As a negative control, we

confirmed that suppressing Full cells has no effect on PN re-

sponses to a weak private odor (Figure S4).

Together, these results indicate that Patchy cells can inhibit

network output without altering network dynamics. By contrast,

Full cells do alter network dynamics, and they do so in a manner

that promotes equal sensitivity to all stimulus frequencies. As a

result, the dynamics of PN output more closely resemble the dy-

namics of odor input. It is notable that we see any effect of acti-

vating and suppressing Full cells, given that there are only two

Full cells per hemisphere, of the �200 LNs per hemisphere.

This may be because these two Full cells alone are responsible

for �30% of all LN / ORN connections (Figure S1).

Comparing global and local inhibitions
Thus far, our results argue that gain control in the antennal lobe is

mediated by at least two types of LNs, LN2P_c (Patchy) and

LN2F_b (Full). The former mediates local postsynaptic inhibition,

whereas the latter mediates global presynaptic inhibition (Fig-

ure 7A). Why would this arrangement be potentially useful?

To address this question, we should consider how signals

from different olfactory glomeruli are combined at the level of

downstream neurons (Figure 7B). Some of these downstream

neurons generate selective responses to particular odors40–45

by combining PN signals from multiple glomeruli, weighted by

the strength of PN connections.44–46 Each odor response (Fig-

ure 7C) can be interpreted as a vector in N-dimensional space,

where N is the number of glomeruli. If a downstream neuron re-

sponds selectively to one odor, its weights define a hyperplane

that separates that odor from all others. Linear separability is
(F and G) Same as (B) and (C) but with boosted activity in LNpre, which flattens P

(H) Same as (D) but for increasing optogenetic activation of LN2F_b cells, which

stimulus frequency (factor, p = 1.9 3 10�25) and light intensity (covariate, p = 7.5

showed several significant differences in the slope of the light/response relations

versus 5 Hz, p = 1.1 3 10�3; 0.28 versus 5 Hz, p = 0.971).
improved if all odor vectors have approximately the same dis-

tance from the origin (Figure 7D). We hypothesized that linear

separability is increased by both global presynaptic inhibition

and local postsynaptic inhibition.

To investigate this idea, we took advantage of a large pub-

lished dataset of ORN odor responses.6 We supplemented this

dataset with a simulated private odor for each ORN type

because some ORN types did not have private odors in the pub-

lished dataset (Figure 7C). Next, we used a published model47,48

to simulate the transformation from ORN firing rates to PN firing

rates without inhibition (Figure 7E). We confirmed that these

model PN responses are more linearly separable than ORN re-

sponses (Figure 7F), as reported previously.47,48 This occurs

because short-term synaptic depression at ORN / PN synap-

ses tends to equalize PN population response magnitudes.

Next, we added global presynaptic inhibition to themodel (Fig-

ure 7G). Specifically, we added an inhibitory unit that performs

presynaptic inhibition on all ORNs, and we made its activity pro-

portional to the summed activity of the entire ORN population

(LNpre). This further improves odor separability (Figure 7H), as

reported previously,47,48 because global presynaptic inhibition

reduces saturation when total ORN activity is high.

Finally, we added local postsynaptic inhibition (Figure 7I). Spe-

cifically, we added an inhibitory unit, which is dedicated to each

PN (LNpost) and which scales down the activity of that PN. We

found that local postsynaptic inhibition produced a further

improvement in linear separability (Figure 7J). Here, however,

we only observed a notable improvement if our odor set con-

tained strong private odors (Figure S5). Strong private odors

are relatively untouched by global gain control because they

do not drive much global activity. For these odors to recruit

gain control, there needs to be local inhibition. Local gain control

prevents these odors from generating false hits in off-target

downstream classifiers.

To summarize, this model shows how odor discrimination can

be improved by three gain control mechanisms acting in series.

First, short-term synaptic depression at ORN / PN synapses

reduces the strongest PN firing rates. Second, global presynap-

tic inhibition further reduces gain when total ORN activity is high.

Finally, local postsynaptic inhibition limits PN responses to

strong private odors that have escaped the effects of global inhi-

bition. All three mechanisms tend to equalize PN population

response magnitudes, thereby improving odor discrimination.

DISCUSSION

In this study, we asked how interneuron diversity contributes to

gain control in olfactory processing. This question was moti-

vated by the fact that there is a wide variety of interneuron types

in the Drosophila antennal lobe,10–19 just as in the vertebrate ol-

factory bulb,24–27 but we do not understand how all these inter-

neurons work together to perform gain control. Here, we focused

on two types of inhibitory interneurons, and we show that they
N frequency tuning.

flattens PN frequency tuning. Two-way ANCOVA shows a significant effect of

3 10�44) with a significant interaction (p = 4.4 3 10�4). Tukey post hoc tests

hip for different stimulus frequencies (2.5 versus 0.28 Hz, p = 2.5 3 10�3; 2.5
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Figure 6. Using optogenetic suppression to

test model predictions

(A) Data: optogenetic suppression of LN2F_b cells

disinhibits PN odor responses. All recorded PNs

were in glomerulus DC3. The odor was a stimulus

that drives strong activity in a broad population of

ORNs (2-heptanone 10�2). PN firing rates were

averaged across recorded cells (n = 11 PNs). Odor

pulse frequencies were 0.28, 2.5, and 5 Hz. Light

was turned on before the odor pulse train, and

terminated after the end of the odor pulse train. We

chose to begin suppressing LN activity before odor

onset because LN activity before odor onset can

alter PN responses to a subsequent odor.19

(B) Model PN firing rates with lowered activity in

LNpre, compared with the default level of activity.

Activity in LNpre was lowered throughout the stim-

ulation. Note that lowering LNpre preferentially dis-

inhibits the onset of the PN odor response, and this

resembles the effect of suppressing activity in

LN2F_b cells.

(C) Data: normalized PN firing rate at each stimulus frequency, with and without optogenetic suppression of LN2F_b cells. Suppressing LN2F_b sharpens PN

frequency tuning. The effect of light is significant in a mixed-effects ANOVA (p = 1.803 10�3), and there is a significant interaction between light and odor pulse

frequency (p = 1.30 3 10�3). Thin lines are individual cells, and thick lines are mean.

(D) Model: PN firing rate versus odor pulse frequency. Lowering activity in LNpre sharpens PN frequency tuning.

See also Figure S4.
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play different functional roles. Our results show how inhibitory in-

terneurons can work together to minimize temporal distortions

while improving stimulus discrimination.

Specialized properties of inhibitory interneurons
Here, we show that Patchy cells are nonspiking cells that use

graded potentials for signaling. Moreover, their odor-evoked cal-

cium signals are largely confined to individual dendritic tufts.

Thus, each tuft can be treated as a separate gain control unit.

Similarly, a recent study reported that specific cells in the

Drosophila visual system also have distinct tufts that are func-

tionally compartmentalized.49 Our results imply that Patchy cells

are specialized to perform intra-glomerular gain control. Howev-

er, a widespread odor stimulus can actually suppress local cal-

cium signals in Patchy cell dendrites; thus, Patchy cells should

be most efficiently recruited by an odor stimulus that evokes

input to just a few glomeruli. Functionally, Patchy cells may be

analogous to the nonspiking periglomerular cells of the verte-

brate olfactory bulb, which are specialized for intra-glomerular

inhibition.24,50 They may also be functionally similar to LNs re-

ported in other insect species that seem to be electrically com-

partmentalized51 and lack Na+ spikes,52–56 although they do

not have a distinctive Patchy morphology.

Meanwhile, we found that Full cells are specialized for global

presynaptic inhibition. Odor responses spread throughout the

arbor of each Full cell, so that even focal inputs generate global

signals. Full cells primarily target ORN axon terminals and are

responsible for a large fraction of all LN / ORN synapses. We

showed that activating these cells increases presynaptic inhibi-

tion, whereas hyperpolarizing them decreases presynaptic inhi-

bition. Full cells may be analogous to specific inhibitory SA cells

of the vertebrate olfactory bulb. SA cells can havemultiple axons

that contact many glomeruli,57,58 and they broadcast focal olfac-

tory input throughout the olfactory bulb, recruiting widespread

inhibition.59,60 SA cells form reciprocal connections with external
8 Current Biology 33, 1–12, December 4, 2023
tufted cells, which relay much of the excitation that projections

neurons receive from ORNs; thus, SA cells control the input to

PNs, analogous to the function of Full cells in Drosophila.

We chose to focus our attention here on Patchy and Broad

LNs because these comprise the majority of LN output synap-

ses3 (Figure S1). However, there are also many distinct regional

and sparse LN types with stereotyped morphology and dedi-

cated axonal and dendritic regions.3 These regional and sparse

LN types may mediate specific interactions between pairs or

subsets of glomeruli.61,62

Interactions among gain control mechanisms
Our findings indicate that the antennal lobe contains at least

three gain control mechanisms. The first is short-term synaptic

depression at ORN / PN synapses.8 The second is broad pre-

synaptic inhibition.35 The third is intra-glomerular inhibition,

which is at least partly postsynaptic.9,10,35 Our results reveal

how these mechanisms interact to manage tradeoffs in network

function.

First, short-term synaptic depression operates on the smallest

spatial scale, at the level of single ORN/ PN synapses.8 Short-

term synaptic depression effectively limits postsynaptic re-

sponses when presynaptic firing rates are high.19,35,36,63,64 How-

ever, it also causes distortion: it accentuates responses to odor

onset, while also creating a ‘‘peaky’’ frequency tuning profile.

This is a problem if PNs need to be equally sensitive to all stimuli,

regardless of their frequency. Although there is evidence that

some PNs extract specific frequency features from an odor stim-

ulus waveform,65 it may still be useful to minimize distortions in

the temporal input to a typical PN. In the future, it would be inter-

esting to see whether PNs with specialized frequency filtering

properties have specialized LN inputs.

Presynaptic inhibition mitigates this problem by reducing

release probability (pr), thereby reducing short-term depression,

hence reducing distortion. It is important that this process is
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Figure 7. Comparing global and local inhibi-

tion

(A) We implemented a multiglomerular model where

LNpre cells pool ORN input from all glomeruli, and

LNpost cells receive PN input from individual

glomeruli. LNpre scales ORN input to each glomer-

ulus, whereas LNpost scales PN output from each

glomerulus.

(B) Downstream LHNs pool input from multiple

glomeruli.

(C) A dataset of ORN odor responses, supple-

mented with simulated private odors for each

glomerulus.

(D) Each odor can be schematized as a vector in

glomerular coding space. Different presentations of

the same odor elicit slightly different responses

(circles); nonetheless, we can draw a boundary that

separates each odor from the rest (dashed lines).

Linear separability is maximized if all vectors have

the same distance from the origin.

(E) Modeled PN responses with no inhibition.

(F) Accuracy of linear classifiers trained to selec-

tively recognize each odor. Classifiers were trained

separately on ORN responses or PN responses.

Each symbol is an odor, with private odors in red.

Almost every odor lies above the line of unity (black

line), meaning that classification is improved by the

ORN / PN transformation.

(G) Modeled PN responses with LNpre.

(H) Accuracy of linear classifiers trained on PN re-

sponses with no inhibition, versus PN responses

with LNpre. For almost every odor, classification is

improved by global presynaptic inhibition.

(I) Modeled PN responses with LNpre and LNpost.

(J) Accuracy of linear classifiers trained on PN re-

sponses with LNpre, versus PN responses with LNpre

and LNpost. For almost every odor, classification is

improved by local postsynaptic inhibition. Classifi-

cation accuracy decreases for the simulated private

odors.

See also Figure S5.
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dynamic: if pr were low at all times, then weak postsynaptic re-

sponses could be lost in the barrage of network noise.66 In effect,

global presynaptic inhibition manages the conflict between the

need for temporal fidelity (avoiding distortion) and the need for

sensitivity (maintaining large responses). Temporal fidelity is

favored by low pr, whereas sensitivity is favored by high pr. Pre-

synaptic inhibition manages this tradeoff by lowering pr only

when stimuli are intense.

Importantly, our results argue that presynaptic inhibition in this

system is primarily a global phenomenon. Unlike short-term syn-

aptic depression, which operates on a small spatial scale, pre-

synaptic inhibition is mediated by inhibitory interneurons with

widespread arbors. Each of these inhibitory interneuron pools

ORN input from most or all glomeruli, allowing it to generate a

better prediction of the network’s signal-to-noise ratio, even on

short time scales. This can be seen as a form of predictive cod-

ing67: the current level of sensory input to all glomeruli is taken as

a prediction of the activity that each glomerulus will see in the

near future because strong sensory input to any given glomer-

ulus often correlates with strong input to multiple glomeruli.6,68
When multiple glomeruli are receiving strong input, then pr can

be safely lowered.

Finally, intra-glomerular inhibition implements gain control for

stimuli that activate just one glomerulus or a few glomeruli. These

stimuli require a gain control mechanism that integrates input

over a small spatial scale, and the compartmentalized tufts of

Patchy cells satisfy this need. In principle, intra-glomerular inhi-

bition can be either postsynaptic or presynaptic. The Patchy

cells we have focused on (likely LN2P_c) implement primarily

postsynaptic inhibition, but other Patchy types (LN2P_a and

LN2P_b) are positioned to implement a mixture of post- and

pre-synaptic inhibitions.

Importantly, these three mechanisms of gain control inhibit

each other. Short-term synaptic depression reduces the recruit-

ment of LNs18,19 and thus should reduce all forms of inhibition;

conversely, presynaptic inhibition reduces short-term synaptic

depression.34,69 Moreover, in this study, we showed that global

presynaptic inhibition suppresses the local calcium signals in

Patchy cells, which should reduce local postsynaptic inhibition.

These competitive interactions between different mechanisms
Current Biology 33, 1–12, December 4, 2023 9
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of gain control ought to limit the total amount of gain control in

the network. Competition also changes the properties of gain

control to suit the current needs of the system; for instance, it

may favor sensitivity when a background odor is present, while

favoring temporal fidelity when odors co-fluctuate as if origi-

nating from a single source (Figure S6).

Benefits of gain control
Gain control in this network is potentially useful for several rea-

sons. First, gain control limits metabolic costs by attenuating

the high firing rates in output neurons. Higher firing rates typically

transmit less information per spike.70 Thus, keeping firing rates

low can be a way to maximize the information transmitted per

spike. All three mechanisms of gain control should limit postsyn-

aptic spikes, and hence, they should all be useful for this reason.

Second, gain control can promote high sensitivity over a wide

dynamic range, thereby making stimuli more discriminable by

downstream neurons.47,48,71,72 Specifically, previous modeling

work has shown that short-term synaptic depression should

improve odor discrimination, and adding global presynaptic inhi-

bition should produce a further improvement.47,48 Here, we

extend this model to show that there is a further improvement

in odor discrimination if we add intra-glomerular postsynaptic in-

hibition to the network. In all three cases, the reason is the same:

all three forms of gain control tend to equalize population

response magnitudes for different stimuli. This in turn makes it

easier to find a set of synaptic weights that allow a downstream

neuron to respond selectively to a particular odor stimulus.

Although this study has focused on one specific network in the

Drosophila olfactory system, our results have general implica-

tions. Gain control is a ubiquitous phenomenon in every sensory

system.Moreover, the gain control model we fit to our data in this

study is an extension of the ‘‘divisive normalization’’ formalism

that is widely used to describe transformations in visual cortex

and other sensory systems.73 Our model shows how that

formalism can be extended to include multiple gain control

mechanisms that are chained together in series. Our workmakes

testable predictions for how other biological neural networks

might use a similar architecture to achieve robust network

performance.
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d All data reported in this paper will be shared by the lead contact upon request.

d Original code underlying computational models and necessary input data have been deposited at zenodo and are publicly

available as of the date of publication. DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Fly husbandry and genotypes
Flies used for electrophysiology and imaging experiments were females, because connectome data was only available for the female

brain, and we wanted to ensure that our physiological data were relevant to female connectome data. Flies were reared in vials on

Nutri-Fly GF German Food (Genesee Scientific #: 66-115) at 25�C and�50-70% humidity on a 12 hour light-dark cycle, collected for

experiments 16-72 hours post-eclosion. For optogenetics experiments flies were raised on a German food supplemented with

0.6 mM all-trans-retinal (Sigma #R2500), and fly vials were covered with foil to protect all-trans-retinal from photodegredation and

to minimize unintended photostimulation. Flies were maintained in groups in their home vials (rather than isolated), and they were

not exposed to previous experimental procedures prior to the experiments reported here. Genotypes of fly stocks used in each figure

are as follows:

Figure 2:

LN2P:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R67B06-Gal4}attP2 / +

P{R57C10-FLPL}su(Hw)attP8 / w*; +; PBac{10xUAS(FRT.stop)myr::smGdP-HA}VK00005 P{10xUAS(FRT.stop)myr::smGdP-V5-

THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1 / P{R67B06-Gal4}attP2

w* / w+; +/+; P{R67B06-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2F_b:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R78F09-Gal4}attP2 / +

P{R57C10-FLPG5.PEST}su(Hw)attP8 / w*; +; PBac{10xUAS(FRT.stop)myr::smGdP-HA}VK00005 P{10xUAS(FRT.stop)

myr::smGdP-V5-THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1 / P{R78F09-Gal4}attP2

w* / +; +/+; P{R78F09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN1:

y* w* / w*; P{GawB}NP1227 / P{UAS-7xHalo7::CAAX}attP40; +

P{R57C10-FLPG5}su(Hw)attP8 / w*; +; PBac{10xUAS(FRT.stop)myr::smGdP-HA}VK00005 P{10xUAS(FRT.stop)myr::smGdP-V5-

THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1 / P{R70A09-Gal4}attP2

w* / w+; +/+; P{R70A09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2S/R:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R24C12-Gal4}attP2 / +

P{R57C10-FLPG5.PEST}su(Hw)attP8 / w*; +; PBac{10xUAS(FRT.stop)myr::smGdP-HA}VK00005 P{10xUAS(FRT.stop)

myr::smGdP-V5-THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1 / P{R24C12-Gal4}attP2

w* / w+; +/+; P{R24C12-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

Figure 3:

LN2F_b:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R78F09-Gal4}attP2 / +

w* / +; +/+; P{R78F09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2P:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R67B06-Gal4}attP2 / +

w* / w+; +/+; P{R67B06-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

Figure 5:

LN2F_b:

w*; P{R26A01-lexA}attP40 / P{20XUAS-IVS-CsChrimson.mVenus}attP40; P{13XLexAop2-mCD8::GFP}attP2 / P{R78F09-Gal4}

attP2

LN2P:

w*; P{R26A01-lexA}attP40 / P{20XUAS-IVS-CsChrimson.mVenus}attP40; P{13XLexAop2-mCD8::GFP}attP2 / P{R67B06-Gal4}

attP2

Figure 6:

w*; P{R26A01-lexA}attP40 / P{UAS-GtACR1.d.EYFP}attP40; P{13XLexAop2-mCD8::GFP}attP2 / P{R78F09-Gal4}attP2

Figure S1:

P{R57C10-FLPL}su(Hw)attP8 / w*; +; PBac{10xUAS(FRT.stop)myr::smGdP-HA}VK00005 P{10xUAS(FRT.stop)myr::smGdP-V5-

THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1 / P{R67B06-Gal4}attP2
e2 Current Biology 33, 1–12.e1–e7, December 4, 2023
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Figure S2:

LN2P:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R67B06-Gal4}attP2 / +

w* / w+; +/+; P{R67B06-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2F_b:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R78F09-Gal4}attP2 / +

w* / +; +/+; P{R78F09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN1:

y* w* / w*; P{GawB}NP1227 / P{UAS-7xHalo7::CAAX}attP40; +

w* / w+; +/+; P{R70A09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2S/R:

w*; P{20XUAS-IVS-mCD8::GFP}attP40 / +; P{R24C12-Gal4}attP2 / +

w* / w+; +/+; P{R24C12-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

Figure S3:

LN2P:

w* / w+; +/+; P{R67B06-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2F_b:

w* / +; +/+; P{R78F09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN1:

w* / w+; +/+; P{R70A09-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

LN2S/R:

w* / w+; +/+; P{R24C12-Gal4}attP2 / PBac{20XUAS-IVS-jGCaMP7f}VK00005

Figure S4:

w*; P{R26A01-lexA}attP40 / P{UAS-GtACR1.d.EYFP}attP40; P{13XLexAop2-mCD8::GFP}attP2 / P{R78F09-Gal4}attP2

Figure S6:

w*; P{R26A01-lexA}attP40; P{13XLexAop2-mCD8::GFP}attP2

Origins of transgenic stocks
P{20XUAS-IVS-mCD8::GFP}attP40 was a gift from Barret Pfeiffer and Gerry Rubin.74 P{GawB}NP1227was obtained from the Kyoto

Drosophila Stock Center (103945). GMR Gal4 and GMR LexA lines75,76 were obtained from the Bloomington Drosophila Resource

Center (BDRC): P{R67B06-Gal4}attP2 (48294), P{R70A09-Gal4}attP2 (47720), P{R24C12-Gal4}attP2 (49076), P{R78F09-Gal4}attP2

(40006), P{R26A01-lexA}attP40 (54113). The following UAS/LexAop transgenes were also obtained from the BDRC: PBac{20XUAS-

IVS-jGCaMP7f}VK00005 (79031), P{20XUAS-IVS-CsChrimson.mVenus}attP40 (55135), P{UAS-7xHalo7::CAAX}attP40 (67621),

P{13XLexAop2-mCD8::GFP}attP2 (32203), P{UAS-GtACR1.d.EYFP}attP40 (92988), P{R57C10-FLPL}su(Hw)attP8 (64087),

P{R57C10-FLPG5}su(Hw)attP8 (64088), P{R57C10-FLPG5.PEST}su(Hw)attP8 (64089), PBac{10xUAS(FRT.stop)myr::smGdP-HA}

VK00005 (64087, 64088, 64089), P{10xUAS(FRT.stop)myr::smGdP-V5-THS-10xUAS(FRT.stop)myr::smGdP-FLAG}su(Hw)attP1

(64087, 64088, 64089).

METHOD DETAILS

Experimental design
Our experimental designs did not involve any situations where animals were assigned to different treatment groups, and for this

reason, randomization was not necessary. We used different genotypes as a means to express different fluorescent molecules in

specific cell types (mCD8::GFP, GCaMP7f, CsChrimson.mVenus, GtACR1.d.EYFP); for this reason, the genotype of each fly was

visually obvious to the experimenter, and blinding was not possible. Sample sizes were chosen in accordance with standard prac-

tices in the field, which are based on the expected level of fly-to-fly variability in each measurement type.

MultiColor FlpOut
MultiColor FlpOut (MCFO) was performed essentially as described previously.28 Primary incubation solution contained mouse anti-

Bruchpilot antibody (1:30, nc82, Developmental Studies Hybridoma Bank), rat anti-FLAG (1:200, Novus Biologicals #NBP1-06712B),

rabbit anti-HA (1:300, Cell Signaling Technologies), and 5% normal goat serum (NGS) in PBST. Secondary incubation solution con-

tained Alexa Fluor 488-conjugated goat anti-rabbit (1:250, Thermo Fisher Scientific #3724), ATTO-647-conjugated goat anti-rat

(1:400, Rockland #612-156-120), and Alexa Fluor 405-conjugated goat anti-mouse (1:500, Thermo Fisher Scientific #3724) and

5% NGS in PBST. Tertiary incubation solution contained DyLight 550-conjugated mouse anti-V5 (1:500, MCA1360D550GA, Bio-

Rad), and 5% normal mouse serum in PBST.

Odor delivery
An odor delivery tube (6mm ID PTFE, McMaster) was aimed at the fly at a fixed distance of 15 mm and angled at 22 degrees. A con-

stant carrier stream of charcoal filtered medical-grade air flowed over the fly at a rate of 2 L/min. Odors were delivered into the carrier
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stream at a rate of 200mL/min using 3-port solenoid valves (Lee Co. LHDA1231415H), 10 mm before the end of the carrier tube.

Whenever we added an odor stream to the carrier stream, we simultaneously removed a stream of non-odorized air with the

same flow rate, in order to minimize changes in total air flow. Immediately prior to each experiment, each odor was mixed with

1 mL paraffin oil in a 2-mL screw-top vial at the specified dilution factor (vol/vol). Paraffin oil (J.T. Baker, VWR #JTS994) was stored

under negative pressure for at least several days prior to use, in order to reduce the concentration of low-molecular-weight volatiles in

the solvent. Odor vials were placed upstream of the solenoid valves, so that air could flow continuously through the odor vial head-

space regardless of valve position; in this configuration odor concentration is a function of flow rate and partial pressure, rather than

headspace saturation/depletion, which allows the delivery of prolonged odor pulses with minimal rundown in odor concentration.

Since this results in odor contamination of the solenoid valve, a separate valve was swapped in for each concentration of each

odor. Solenoid valves fed directly into the carrier stream, to minimize temporal smoothing of the odor concentration waveform.

We verified odor waveform dynamics with a photoionization device (miniPID, Aurora Scientific; Figure S7), placed at the fly’s location.

Odor onset and offset had a time constant of �20 ms, and no change in steady state odor concentration was detected on the time-

scale of seconds to minutes.

Stimuli
For imaging experiments, we used 2-s odor pulses, with an inter-pulse interval of 8 s. For electrophysiology experiments, we used

trains of odor pulses at 0.28 Hz, 2.5 Hz, and 5 Hz. The 0.28 Hz stimulus consisted of 2-s pulses with 1.58-s inter-pulse intervals. The

2.5 Hz stimulus consisted of 20-ms pulses with 380-ms inter-pulse intervals. The 5 Hz stimulus consisted of 10-ms pulses with

190-ms inter-pulse intervals. These stimulus frequencies and duty cycles were chosen to natural odor stimuli, where odor encounters

tend to be either brief and closely spaced, or elsemore prolonged andmorewidely spaced.18 Between the end of one odor pulse train

and the beginning of the next pulse train, we enforced a pause of at least 8 s. Pulse train stimuli were validated using a photoionization

detector (PID, Figure S7), and these same pulse train stimuli were used as an input to our model.The exceptions were the model fre-

quency tuning curves, where we used square waves (50% duty cycle) of frequency 0.03-11.22 Hz smoothed with a 30 ms exponen-

tial filter.

Fly preparation
Flies were cold anesthetized and secured in a hole in a horizontal platform consisting of.001" thick 302 stainless steel shim stock. A

hole was photo-etched in this steel platform with a profile matching the fly’s thorax and head (Etchit). This configuration allowed the

dorsal part of the fly’s head (and thorax) to be covered in saline, while the ventral head (including antennal segments a2 and a3), tho-

rax, abdomen, and limbs remained dry. After saline was used to cover the dorsal part of the preparation, the antennal lobes were

exposed by dissecting away a dorsal portion of the head capsule with fine forceps. Saline composition was 103 mM NaCl, 3mM

KCl, 5 mM TES, 8 mM trehalose, 10 mM glucose, 26 mM NaHCO3, 1 mM NaH2PO4, 4mM MgCl2, 1.5 mM CaCl2, and was adjusted

to have a pH of 7.1-3 and an osmolarity of 270-275 mOsm. Throughout each experiment, saline was bubbled with 95%O2 / 5%CO2

and it was perfused continuously over the preparation. The antennaewere inspected immediately before the start of each experiment

to ensure they remained dry and appeared healthy.

Electrophysiology
Whole-cell in vivo patch-clamp recordings were performed with an internal pipette solution composed of 140 mM KOH, 140 mM as-

partic acid, 10 mMHEPES, 1 mM EGTA, 1 mM KCl, 4 mMMgATP, 0.5 mM Na3GTP, and 13 mM biocytin hydrazide. Internal solution

was adjusted to have a pH of 7.2 and an osmolarity of 265 mOsm. Patch pipettes (fabricated using a P-97 puller from Sutter Instru-

ments) were made from borosilicate glass with O.D. 1.5 mm and I.D. 0.86 mm. Pipette resistance typically ranged from 6-10 MU.

Cells were targeted for recording under an Olympus BX51 microscope with a 40x water-immersion objective. All recordings were

performed in current-clamp mode with an Axopatch 200B amplifier and filtered with a 4-pole low-pass Bessel filter. Data was either

filtered at 5 kHz and digitized at 10 kHz or filtered at 10 kHz and digitized at 20 kHz, using a National Instruments data acquisition

board. Recorded voltages were corrected for a liquid junction potential of -13 mV.82 Each cell was recorded in a different fly.

Optogenetics
To stimulate LNs using CsChrimson37 we delivered blue light (490 nm) from an LED (ThorLabs M490L4) through the 40x water-im-

mersion objective, with the light intensity attenuated by two neutral density filters in the light path (ND25 and ND3, Olympus). We

further modulated light intensity with analog commands sent from the rig computer, set to modulate light intensity to 0%, 2.5%,

5%, 10%, 20%, 50%, or 100% of maximum power. This configuration resulted in power measurements at the sample of 0, 0.17,

0.48, 1.05, 2.40, 6.07, and 11.50 mW respectively. Light was timed so that it precisely coincided with the opening and closing of

the valve that controlled odor delivery. To hyperpolarize LNs we used GtACR138,39 with the same light delivery configuration, but us-

ing only one light intensity (6.07mW), whichwe confirmedwas sufficient to block odor-evoked spiking in LN2F_b neurons.We did not

test the effect of expressing GtACR1 in LN2P_c neurons because we were concerned about the possibility of GtACR1 expression in

PNs in this genotype, given that in pilot experiments we observed that light hyperpolarized PNs and this effect persisted even after we

pharmacologically blockedmost network activity with 1 mMTTX.We did not see light-evoked PN depolarization whenwe depolarized

LN2P_c cells with CsChrimson/light, suggesting that if this driver produces off-target Gal4 expression in PNs, this effect is genotype-

dependent.
e4 Current Biology 33, 1–12.e1–e7, December 4, 2023



ll
OPEN ACCESS

Please cite this article in press as: Barth-Maron et al., Interactions between specialized gain control mechanisms in olfactory processing, Current
Biology (2023), https://doi.org/10.1016/j.cub.2023.10.041

Article
Calcium imaging
In vivocalcium imagingwasperformedessentially asdescribedpreviously,83,84witha two-photon laser scanningmicroscope (Bergamo

II, Thorlabs) equippedwith a resonant scanner (Vidrio). Two-photon excitationwas achievedwith a femtosecond Ti:Sapphire Laserwith

dispersion precompensation (Vision-S, Coherent) tuned to 940 nm. Imaging was done using a 20x objective (N.A. 1.0; XLUMPLFLN,

Olympus) mounted on a fast piezoelectric objective scanner (P-725, Physik Instrumente). Emission fluorescence was filtered with a

525-nm bandpass filter (Thorlabs) and collected using a GaAsP photomultiplier tube (Hamamatsu). The imaging region was centered

on the right antennal lobe. The imaging volume was 1283128 pixels and 15 slices deep in the z-axis (5 mm per slice), resulting in a

�6.5 Hz volumetric scanning rate. The volume encompassed almost the entire antennal lobe, except for a small ventral portion.

In vivo neuropil staining
At the end of each imaging experiment, we added 10mL a-bungarotoxin-AlexaFluor488 solution (116mM in saline) to the reservoir of

saline around the brain, and we gently disrupted the glial sheath with fine forceps to increase permeability. The prep was then incu-

bated with this solution for 20 minutes, followed by three saline washes of 2-3 min each. We then collected an image of the antennal

lobe with the two-photon laser scanningmicroscope. This image was subsequently used to identify glomerulus boundaries and draw

the borders of ROIs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Connectomics analysis
To investigate the connectivity andmorphology of Broad and Patchy cells, we analyzed a partial connectome of the dorsal part of the

right central brain of an adult female fly obtained by the FlyEM Project at Janelia Research Campus3 (https://www.janelia.org/

projectteam/flyem/hemibrain). To conduct the analyses we used neuprint-python81 (https://github.com/connectome-neuprint/

neuprint-python) in conjunction with neuprint and the hemibrain v1.2.1 dataset (https://neuprint.janelia.org/). We began with a list

of all 196 LNs innervating the right antennal lobe3 (Table S1), and identified all synaptic partners with five or more synapses, in order

to eliminate spurious connections.We ensured that this list contained the 2,644 identifiedORNs and 338 identified PNs, and used it to

generate an antennal lobe connectivity matrix. For Figure 3C we discarded all inputs that were not LNs, PNs, or ORNs, then summed

and normalized inputs within each of our four LN subtypes of interest. For Figure 4A we kept all inputs and outputs, but placed con-

nections that were not part of our six groups of interest into a ‘miscellaneous’ category. Example cells shown in Figure 2A are hemi-

brain IDs 1640909284 (LN2F_b), 2105086391 (LN2P_c), 1640887603 (LN1), 1732995501 (LN2S). Example cell shown in Figure 3A is

hemibrain ID 1639886198. For Figure S3 we used NAVis (https://github.com/navis-org/navis) for morphological analyses. We

retrieved meshes, and created skeletons with the MeshNeuron class’ default ‘wavefront’ method (a wrapper for Skeletor). We

then transformed the skeletons into the JRC2018F template brain space prior to doing morphometric analyses.

Electrophysiology data analysis
All analyses were done in MATLAB using custom code. Spikes were detected as local maxima using MATLAB’s findpeaks function,

and visually confirmed. Firing rates were calculated as kernel density estimates with a 150-ms hanning window centered at zero lag.

Rate estimates were then downsampled to 1 kHz before further analysis. To analyze subthresold voltages, spikes were removed us-

ing a 40-ms median filter, then downsampled to 1 kHz before further analysis. To calculate the odor response peak-to-steady ratio,

we divided the maximum rate within the first 350 ms by the maximum rate of the last 250 ms, here focusing on the 2-s stimulus. To

generate frequency tuning curves, we projected the baseline-subtracted firing rate onto a version of the stimulus waveform that was

normalized so the integral equaled 1, then centered; these frequency responses were then normalized so that theminimum trial-aver-

aged response within each experiment was set to 0 and the maximum was set to 1.

Calcium imaging data analysis
Rigid motion correction was performed in the x, y, and z axes using NoRMCorre.80 ROIs for glomerulus DC3 and the entire antennal

lobe spanned multiple planes, and were initially drawn based on a-bungarotoxin staining of neuropil boundaries. ROIs were then

adjusted slightly to account for imprecision in realignment, post-staining, and drift between trials that were not co-registered. For

each trial a DF/F metric was calculated, with baseline fluorescence (F) defined as the mean fluorescence within ROI over a 1-s win-

dow immediately preceding odor onset. To calculateDF/Fmean and standard deviation, individual traces were resampled at 1kHz to

control for phase shifts between volume sample times and odor presentation. To quantify the degree to which 2-heptanone modu-

lated DC3 farnesol responses, we computed DF/F (over the 2-s odor presentation period) and we normalized the response to the

blend (farnesol + 2-heptanone) by the sum of the two individual component odor responses. Here a value of 1 implies linear summa-

tion, whereas a value <1 implies sublinear summation, and a value >1 implies supra-linear summation.

Statistical analysis
ANOVA and ANCOVAmodels were fit in MATLAB using the anovan function. Tukey post-hoc tests were performed in MATLAB using

themultcompare function. Linear mixed-effects models were fit using the formula API of the python statsmodels package. Two-sam-

ple t-test was performed in MATLAB using the ttest2 function. For Figure 3E we used a 2-way ANOVA with factors for cell type and

spatial zone. For Figure 3Fwe used a linearmixed-effectsmodel with a fixed effect for odor (blend vs farnesol) and a random intercept
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for between-cell effects. For Figure 3G we used a two-sample t-test. For Figures 5D and 5H we used 2-way ANCOVAmodels, with a

categorical factor for stimulus frequency and continuous covariate for light intensity. For Figure 6C we used a mixed-effects ANOVA

with two fixed-effects factors for light (on/off) and stimulus frequency, and a random factor for between-cell effects. For Figures 7C

and 7Dwe used amixed-effects ANOVAwith two fixed-effects factors for 2-heptanone (present/absent) and stimulus frequency, and

a random factor for between-cell effects.

Dynamical model
Figures 4 and 5 use a dynamical model that describes how neural activity varies over time, given some fluctuating odor concentration

waveform. For simplicity, this model focuses on one glomerulus, and each cell type is represented by just one network node. The

input to the model was a time-varying ORN firing rate (sðtÞ, with units of spikes/s). To model the ORN firing rate, we took the

time-varying odor concentration profile (measured as the output voltage of a photoionization detector; see ‘Odor delivery’ above,

Figure S7); we then scaled this waveform (by a factor a, with units of spikes/s), added a baseline offset value (b in units of spikes/s)

representing spontaneous ORN activity,6 and convolved it with a 30 ms exponential kernel to approximate the dynamics of olfactory

transduction.7 ORN neurotransmitter release (uðtÞ, with units of s-1) varied as a function of ORN firing rate:

uðtÞ = ðsðtÞ $ a + bÞ$AðtÞ$pðtÞ (Equation 1)

where AðtÞ is the fraction of available synaptic resources (e.g., available synaptic vesicles or neurotransmitter receptors) and pðtÞ is
the presynaptic vesicle release probability (with units of probability per spike, or spikes-1). Both A and p are bounded at 0 and 1. As

ORN release fluctuates, A is depleted and replenished:

dA

dt
= � uðtÞ+ ð1 � AðtÞÞ

ta
(Equation 2)

where ta is the time constant of synaptic resource replenishment (with units of s). Meanwhile, ORN neurotransmitter release excites a

PN unit and an LN_pre unit. The LN_pre unit is recurrently connected with the ORN. Meanwhile, the LN_post unit is recurrently con-

nected with the PN. PN and LN responses are given by the vector rðtÞ:

tr
dr

dt
= � rðtÞ+ReLUðW $ uðtÞ + M $ rðtÞÞ (Equation 3)

where tr is the time constant of network activity (15 ms),W is the matrix of feedforward ORN/PN and ORN/LN_pre connections,

M is the matrix of recurrent connections between the PN unit and the LN_post unit, and ReLU denotes a rectifying-linear activation

function. LN_pre drives presynaptic inhibition IðtÞ, which scales release probability pðtÞ:

pðtÞ = prest

1+IðtÞ; IðtÞ =
X
i

riðtÞ$qLN pre/ORN (Equation 4)

where prest is the resting release probability (with no presynaptic inhibition), and qLN_pre/ORN gives the input weights from LN_pre

onto the ORN.

To reduce complexity, we set all excitatory weights (wORN/PN, wORN/LN_pre, mPN/LN_post) to 1. Additionally, we constrained

mLN_post/PN (in thematrixM) to -0.20 in order to ensure a reasonable parameter value despite partial redundancy that exists between

mLN_post/PN and a during model fitting but not experimentation. The model then had five free parameters which specified the scale

and offset of ORN firing (a, b), time constant of replenishment (taÞ, resting release probability (prest), and inhibitory synaptic weights

(qLN_pre/ORN).We fit these parameters bymaximizing the correspondence betweenmodel PN responses and the recorded dynamics

of 35 DC3 PNs using MATLAB’s fitnlm function. Fitted values were as follows: a=1004.90 spikes/s, b=30.60 spikes/s, ta =3.84 s,

prest= 0.006063, qLN_pre/ORN=0.103. R
2 for the model fit was 0.806 for the 5 Hz stimulus, 0.831 for the 2.5 Hz stimulus, and 0.910

for the 0.28 Hz stimulus (0.849 in aggregate).

For experiments in Figure 5 we mimicked optogenetic activation by adding a smoothed and delayed version of the stimulus to

either LN_pre or LN_post. Frequency tuning experiments were done with smoothed and delayed square waves, and activity injec-

tions were constant. For experiments in Figure 6 we mimicked optogenetic silencing by reducing the value of qLN_pre/ORN to 0.2

(�20% of fit value). We obtained frequency tuning curves by projecting model PN output onto a version of the stimulus waveform

that was normalized so the integral equaled 1.

The competitive interactions between gain control mechanisms appear in this model as follows:

i) Global presynaptic inhibition reduces short-term depression - LNpre activity drives presynaptic inhibition, which reduces release

probability (Equation 4). This reduces ORN neurotransmitter release (Equation 1), which reduces depletion of synaptic re-

sources (Equation 2).

ii) Global presynaptic inhibition reduces local postsynaptic inhibition - LNpre activity drives presynaptic inhibition, which reduces

release probability (Equation 4). This reduces ORN neurotransmitter release (Equation 1), which reduces LNpost activity

(included in the vector r(t), Equation 3).

iii) Short-term depression reduces global presynaptic inhibition - Depletion of synaptic resources (Equation 2) reduces ORN

neurotransmitter release (Equation 1), which reduces LNpre activity (included in the vector r(t), Equation 3).
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iv) Short-term depression reduces local postsynaptic inhibition - Depletion of synaptic resources (Equation 2) reduces ORN

neurotransmitter release (Equation 1), which reduces LNpost activity (included in the vector r(t), Equation 3).
Population activity model
Figure 7 models population activity, specifically focusing on the time-averaged firing rate of large PN ensembles. We began with a

model used by previous studies47,48 that describes the effect of short-term synaptic depression and presynaptic inhibition on the

vector of PN firing rates (rPN):

rPN = Rmax

�
r1:5ORN

s1:5+r1:5ORN+ms1:5ORN

�
(Equation 5)

whereRmax is themaximum PN firing rate (165 Hz), s is the ORN firing rate for which the PN response is half-maximum in the absence

of inhibition (12 Hz). We took these values from previous study that fitted them values to PN electrophysiological data.47 The term

msORN represents the effect of global presynaptic inhibition on PN responses, where sORN is the sum of all ORN firing rates for a given

odor, andm = 0.05 (taken from Luo et al.48). The term rORN represents a vector of ORN firing rates, one for each odor stimulus, taken

from electrophysiological data in Hallem and Carlson6 We supplemented this data set with 24 simulated private odors (one for each

ORN type) because some ORN types did not have private odors in the published data set. Thus, the input to the model included 200

odors in total. For the model without presynaptic inhibition, we set m to zero.

Next, we modeled the effect of intra-glomerular postsynaptic inhibition using a single exponential function of the form:

rLN post = aeðbrPNÞ (Equation 6)

where b = 0.05 and a = 0.0496. We chose b by inspection, and we calculated a such that the dynamic range of rLN post is the same as

the dynamic range of rPN for this dataset. The form of this function was intended to approximately reproduce the supralinear response

of LN2P_x cells to increasing odor concentration (Figures 2D and 2E). We used rLN post to update rPN as follows:

rPN / rPN � wpost$rLN post (Equation 7)

where wpost= 0.2. To assess odor discriminability we trained a set of 200 classifier neurons. Each classifier neuron was trained to

respond selectively to one odor out of the full set of 200 (one-versus-rest classification). Weights were obtained by using Fisher’s

linear discriminant analysis (LDA) as described previously,47,48 and a threshold was chosen to produce an approximately equal num-

ber of false positives and false negatives on our test set.47,48 To generate training and test samples, we used a noisemodel described

previously48:

rPN/rPN + d tanhðarPNÞh (Equation 8)

where d = 10 Hz, a = 0.025 Hz, and h is a random variable with zero mean and unit variance. Training and test datasets were equal in

size, with class-balanced positive and negative odors, such that each negative odor was repeated 10 times and each positive odor

was repeated 200310 times. Accuracies shown in Figure 7 were averaged over 100 initializations. Results for the no-inhibition model

and themodel with presynaptic inhibition are similar to those reported previously when LDAwas used to obtain glomerular weights48;

note that performance is qualitatively similar but quantitatively different when other methods are used.48

It should be noted that there are two forms of intra-glomerular gain control in this model: short-term synaptic depression, and intra-

glomerular postsynaptic inhibition. These two forms of gain control have non-redundant effects on odor discrimination in our model.

Short-term synaptic depression tends to produce saturation of the strongest odor responses, whereas intra-glomerular postsynaptic

inhibition does not produce saturation.

The competitive interactions between gain control mechanisms appear in this model as follows:

i) Global presynaptic inhibition reduces short-term depression - In this static model, short-term depression is modeled as a satu-

rating relationship betweenORN firing rate and PN firing rate (Equation 5). Global presynaptic inhibition diminishes the tendency

of PN firing rates to saturate as a function of ORN firing rates (Equation 5).

ii) Global presynaptic inhibition reduces local postsynaptic inhibition - Global presynaptic inhibition reduces PN activity (Equa-

tion 5), which reduces LNpost activity (Equation 6).

iii) Short-term depression reduces global presynaptic inhibition - This is included in the value of m, which is the parameter that

specifies the magnitude of global presynaptic inhibition recruited by a given value of the summed ORN firing rate sORN. On

average, the tendency of short-term depression to reduce global presynaptic inhibition will result in a lower value of m. In

this model, we use a value ofm that was previously fit to data, and so this phenomenon is simply captured in that fitted value.

iv) Short-term depression reduces local postsynaptic inhibition - Short-term depression causes PN firing rates to saturate as a

function of ORN firing rates (Equation 5), and so reduces the recruitment of LNpost (Equation 6).
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