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SUMMARY

In many regions of the visual system, the activity of
a neuron is normalized by the activity of other neu-
rons in the same region. Here we show that a similar
normalization occurs during olfactory processing in
the Drosophila antennal lobe. We exploit the orderly
anatomy of this circuit to independently manipulate
feedforward and lateral input to second-order pro-
jection neurons (PNs). Lateral inhibition increases
the level of feedforward input needed to drive PNs
to saturation, and this normalization scales with the
total activity of the olfactory receptor neuron (ORN)
population. Increasing total ORN activity also makes
PN responses more transient. Strikingly, a model
with just two variables (feedforward and total ORN
activity) accurately predicts PN odor responses.
Finally, we show that discrimination by a linear
decoder is facilitated by two complementary trans-
formations: the saturating transformation intrinsic
to each processing channel boosts weak signals,
while normalization helps equalize responses to
different stimuli.

INTRODUCTION

Sensory neurons are selective for specific stimulus features.

For example, a neuron in primary visual cortex may be sensitive

to both the spatial location and the orientation of a stimulus.

Similarly, the preferred stimulus of an olfactory neuron is defined

by the molecular features of the odors that are effective at driving

that neuron. Stimuli with nonpreferred features often have an

inhibitory effect on a sensory neuron. The earliest illustrations

of this principle came from studies of neurons in the Limulus

eye (Hartline et al., 1952) and vertebrate retina (Barlow, 1953;

Kuffler, 1953). These neurons respond best to light at a particular

spatial location, and responses to light at the best position can

be suppressed by simultaneously illuminating other locations.

This concept was later extended to features other than spatial

location. For example, it was observed that in primary visual

cortex, a neuron’s response to a grating with a preferred orienta-

tion can be suppressed by superimposing a nonpreferred orien-

tation (Morrone et al., 1982).
The idea linking these findings is that a neuron’s response to

a preferred stimulus feature is inhibited by adding nonpreferred

stimulus features. This phenomenon can be understood as a

form of ‘‘gain control,’’ defined as a negative feedback loop

that keeps the output of a system within a given range. It has

been proposed that this type of gain control in the visual system

works by performing a divisive normalization of neural activity

(Heeger, 1992). According to the divisive normalization model,

the response of a neuron to a complex stimulus is not the sum

of its responses to each stimulus feature alone. Rather, the

response is divided by a factor related to the total ‘‘stimulus

energy,’’ which increases with stimulus intensity and complexity.

For this reason, the response of a neuron to a complex stimulus

is closer to an average of its responses to each feature.

A fundamental question is how gain control alters the

response of a neuron to its preferred stimuli. A neuron’s

response to preferred stimuli is generally nonlinear, with intense

preferred stimuli driving the neuron to saturation. It is important

to define whether gain control scales the input to this function

(thus making it more difficult to reach saturation) or the output

of this function (diminishing the strength of the saturated

response). Both forms of gain control seem to occur in visual

processing and attentional control (Albrecht and Geisler, 1991;

Cavanaugh et al., 2002; Williford and Maunsell, 2006; Reynolds

and Heeger, 2009). Another important question is what cellular

and circuit mechanisms form the substrate of this process.

At least in some classic examples of gain control in visual pro-

cessing, there is a clear role for lateral inhibition (Kuffler, 1953;

Hartline et al., 1956).

One reason why these questions have been difficult to resolve

is the complexity of the underlying circuits. Ideally, one would

like to selectively manipulate feedforward excitation and lateral

inhibition to the neuron one is recording from. From this per-

spective, the Drosophila antennal lobe is a useful preparation

because of its compartmental organization (Figure 1A). All the

olfactory receptor neurons (ORNs) that express the same

odorant receptor project to the same glomerulus in the brain,

where they make excitatory synapses with projection neurons

(PNs). Each PN receives ORN input from one glomerulus and

lateral inputs from other glomeruli (Bargmann, 2006). A PN’s

odor responses are disinhibited by silencing input to other

glomeruli (Olsen and Wilson, 2008; Asahina et al., 2009), implying

that lateral interactions are mainly inhibitory. This could explain

the observation that a PN’s response to an odor can be inhibited

by adding a second odor that is ineffective at driving that PN

when presented alone (Deisig et al., 2006; Silbering and Galizia,
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Figure 1. A Generalized Intraglomerular Transformation

(A) Experimental design. Varying the concentration of a private odor stimulus

activates one ORN type to varying degrees. Recordings are performed from

both these ORNs and their cognate PNs. In this figure, we use only private

odors. In the experiments that follow, we will blend in a public odor that acti-

vates other ORNs (but not the cognate ORNs of the PNs we are recording

from). This allows us to manipulate direct and lateral input independently.

(B) Intraglomerular input-output functions for four glomeruli. Within a graph,

each point is a different concentration of the same private odor. GABA

receptor antagonists (5 mM picrotoxin + 10 mM CGP54626) increase the gain

in DM1 but not VM7 (red). All values are means of 6�12 recordings, ± SEM.

Curves are best fits to Equation 1. Concentrations are as follows: methyl

acetate 0, 10�11, 10�10, 10�9, 3 3 10�8, 7 3 10�8, 10�7, 10�6, 10�5; trans-2-

hexenal 10�9, 10�8, 10�7, 5 3 10�7; 2-butanone 10�7, 10�6, 10�5, 10�4; ethyl

acetate 0, 10�14, 10�13, 10�12, 10�11, 10�10, 10�9, 10�8, 10�7, 10�6.
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2007). Similar mixture suppression effects occur in the verte-

brate olfactory bulb (Kang and Caprio, 1995; Giraudet et al.,

2002; Tabor et al., 2004).

The aims of this study are to understand how lateral inhibition

alters the response of a PN to its presynaptic ORNs and how

this type of gain control affects PN population codes for odors.

Previous studies have used odor stimuli that activate multiple

ORN types, thereby driving both direct and lateral input to

a PN. Instead, here we begin with ‘‘private’’ stimuli, defined as

stimuli that activate only one ORN type (Figure 1A). By mixing

private stimuli with varying concentrations of ‘‘public’’ stimuli

(defined as stimuli that selectively activate a population of other
288 Neuron 66, 287–299, April 29, 2010 ª2010 Elsevier Inc.
glomeruli), we measure how increasing activity in other glomeruli

suppresses the response of a PN to its presynaptic ORNs.
RESULTS

A Uniform Intraglomerular Transformation
Based on a previous study (Hallem and Carlson, 2006), we iden-

tified four likely private odors and their cognate ORN types

(Table S1). We sampled randomly from many ORNs of other

types in order to confirm that these odors do not activate non-

cognate ORNs (Figure S1). Moreover, where mutations were

available in the cognate odorant receptors for these odors, we

verified that they virtually abolish the response of the ORN pop-

ulation (Figure S1).

For each of the four associated glomeruli, we recorded the

responses of both ORNs and PNs to a range of concentrations

of their private odor. Responses were quantified as spike rates

over the 500 ms stimulus period. We found that the input-output

relationships for three of these glomeruli were very similar

(Figure 1B). In all these cases, weak ORN inputs were selectively

boosted and strong inputs saturated. In the fourth glomerulus,

the relationship between PN and ORN responses was shallower,

but when GABA receptor antagonists were added, this relation-

ship reverted to the typical steeper shape. The antagonists had

no effect on a more typical glomerulus (Figure 1B).

These results suggest that all glomeruli perform a similar trans-

formation on their inputs, although in some cases this transfor-

mation is modified by GABAergic inhibition. We can formalize

this by fitting all these input-output relationships with the same

equation:

PN = Rmax

�
ORN1:5

ORN1:5 + s1:5

�
(1)

where PN is the response of an individual PN to a private odor

stimulus, and ORN is the response of an individual presynaptic

ORN to the same stimulus. Rmax is a fitted constant representing

the maximum odor-evoked response, and s is a fitted constant

representing the level of ORN input that drives a half-maximum

response. Rmax and s are essentially the same for all glomeruli

(10�10, antagonists s is larger for the fourth glomerulus we exam-

ined). The saturating form of this function reflects the combined

effects of short-term depression at ORN-PN synapses and the

relative refractory period of PNs (Kazama and Wilson, 2008). In

Equation 1, the input terms are raised to an exponent of 1.5

because this produced the best fit; a similar equation describes

the contrast response functions of visual neurons, and there too

an exponent >1 is generally required (Albrecht and Hamilton,

1982; Heeger, 1992; Reynolds and Heeger, 2009; see Discus-

sion).
Lateral Interactions Are Inhibitory
We next asked how activity in other glomeruli affects a PN’s

response to its cognate ORNs. Here we focused on two

glomeruli: VM7 and DL5. In order to manipulate input to other

glomeruli independently from input to these glomeruli, we used

a ‘‘public’’ odor that activates many ORN types but not these

ORNs (Figure 1A). We verified that this odor (pentyl acetate)



Figure 2. Increased Activity in the ORN

Population Inhibits PN Responses to Direct

ORN Input

(A) Antennal LFP shows that increasing the

concentration of the public odor (pentyl acetate)

increases total ORN activity. Black bars are odor

stimulus period. Each trace is a mean of 9–19

recordings, ± SEM.

(B) Peristimulus time histograms (PSTHs) for VM7

PNs, each averaged across 10–11 recordings, ±

SEM. Each column is a different concentration of

pentyl acetate, each row a different concentration

of 2-butanone. See (D) for scale bars.

(C) Average spike rate during 500 ms of odor

presentation, ± SEM. Matrix of bars is analogous

to the matrix of PSTHs in (B).

(D) GABA receptor antagonists block the suppres-

sive effect of pentyl acetate (10�3) on the response

of VM7 PNs to a private odor (2-butanone 10�6;

n = 5, ± SEM). Picrotoxin (5 mM) and CGP54626

(10 mM) were applied together to block both

GABA-A and GABA-B receptors (Olsen and

Wilson, 2008). With antagonists, the response

to the blend is significantly different from the

response in control saline and not significantly

different from the response to the private odor

alone (p < 0.05 and p = 0.18, paired t tests).

(E) Same as (D) but for DL5 PNs. The same con-

centrations of pentyl acetate were used as the

public odor (except 10�6, which was omitted).

The private odor was trans-2-hexenal. Each bar

is a mean of 9–19 recordings, ± SEM.
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does not activate either VM7 or DL5 ORNs (at dilutions up

to 10�3, see Figure S2). Thus, varying the concentration of

pentyl acetate allows us to vary total ORN activity, as measured

by field potential recordings in the antenna (Figure 2A).

We mixed pentyl acetate with 2-butanone (the private odor

for VM7 ORNs) at various concentrations, generating 20 stimuli

in total that we then tested on VM7 PNs. We found that pentyl

acetate inhibited the responses of VM7 PNs to 2-butanone,

with higher concentrations producing more inhibition (Figures

2B and 2C). The effect of pentyl acetate was blocked by GABA

receptor antagonists (Figure 2D), as expected.

Similar results were obtained for a second glomerulus: DL5.

Here we mixed pentyl acetate with trans-2-hexenal, the private

odor for DL5 ORNs (Figure 2E). The magnitude of inhibition

was consistently smaller for DL5 than for VM7, implying that

glomeruli differ in their sensitivity to lateral inhibition.
Lateral Inhibition Normalizes Input
We next asked whether lateral inhibition scales the horizontal

or vertical axis of the input-output function (Figures 3A and 3B).

We term horizontal scaling ‘‘input gain control.’’ We can express

this by adding a suppression factor s to the denominator of the

hyperbolic ratio function:

PN = Rmax

�
ORN1:5

ORN1:5 + s1:5 + s1:5

�
(2)

We term vertical scaling ‘‘response gain control’’ (Figure 3B), and

we can express this by scaling Rmax:
PN =

�
1

s1:5 + 1

�
,Rmax

�
ORN1:5

ORN1:5 + s1:5

�
(3)
We fit both these models to the data in Figure 2, fixing Rmax and s

at the values we obtained from the curves in Figure 1B and letting

s be a fitted variable that varies with the concentration of pentyl

acetate.

We found that for both VM7 and DL5, the input gain model

generated better fits than the response gain model (Figures

3C–3G). This reflects the fact that responses to dilute private

odor were suppressed more powerfully in proportional terms

than responses to concentrated private odor. The input gain

model was also better than two subtractive models (see Supple-

mental Experimental Procedures). Thus, the effects of lateral

inhibition are best described as input gain control.

Lateral Inhibition Scales with Total ORN Activity
How does the level of inhibition in a given glomerulus depend

on the pattern of activity in the ORN population? It is possible

that each glomerulus might receive strong inhibitory input

from just a few glomeruli. However, many individual GABAergic

local neurons in the antennal lobe innervate most glomeruli

(Das et al., 2008; Lai et al., 2008), suggesting that they pool exci-

tation from most ORN types and inhibit each glomerulus by

a factor that depends on the total activity of this ORN population.

If this were true, then our data should reveal a clear relationship

between s and total ORN activity, assuming all glomeruli

contribute equally to the pool.
Neuron 66, 287–299, April 29, 2010 ª2010 Elsevier Inc. 289



Figure 3. Input Gain Control Describes How Lateral Inhibition

Changes the Input-Output Function
(A) Schematic of input gain control.

(B) Schematic of response gain control.

(C) VM7 PN firing rates are plotted as a function of VM7 ORN firing rates. Each

shade is a different pentyl acetate concentration, with lighter shades for higher

concentrations. Within each curve, each point is a different concentration of

the private odor. Fits are to Equation 2, with Rmax and s as fixed constants,

and s as a free parameter. Same PN data as Figure 2C; ORN responses are

means of 5–10 recordings, ± SEM.

(D) Same data as in (C), but fits to Equation 3.

(E) Same as (C), but for DL5. Same PN data as Figure 2E; ORN responses are

means of 5–8 recordings, ± SEM.

(F) Same as (D), but for DL5.

(G) The input gain model produces better fits than the response gain model.

(H) Values of the suppression factor s obtained from the fitted curves in (C) and

(E), plotted against the LFP response corresponding to each curve. A linear fit

produced good predictions for novel odors (see Figures 4 and S4), whereas

sublinear (e.g., exponential) fits did not.
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To test this prediction, we asked how s depends on total ORN

activity. We obtained s using Equation 2 for each concentration

of pentyl acetate, again with Rmax and s held constant at the
290 Neuron 66, 287–299, April 29, 2010 ª2010 Elsevier Inc.
values obtained from the curves in Figure 1B. For each con-

centration of pentyl acetate, we obtained an estimate of total

ORN activity by measuring the antennal local field potential

(LFP; Figure 2A) because this scales linearly with ORN activity

(Figure S3). We found that the relationship between s and LFP

was linear for both VM7 and DL5 (Figure 3H). Thus,

s = m,LFP (4)

where the slope m represents the sensitivity of each glomerulus

to lateral inhibition. (Note that m is larger for VM7 than for DL5;

Figure 3H.) The linear relationship between s and LFP implies

these glomeruli are normalized by an amount that simply scales

with total ORN activity.

If lateral inhibition in each glomerulus scales with total ORN

activity, then the contribution of any single glomerulus to the

inhibitory signal should be weak. We therefore asked whether

stimulating one glomerulus can produce substantial lateral inhi-

bition. We used private odors to drive robust activity (�100

spikes/s) in a single ORN type but not in VM7 ORNs. The ORN

types activated by these odors were DM4, DL5, and DM1, and

the three private stimuli were the highest concentrations of their

cognate private odors in Figure 1. Mixing each private odor with

2-butanone produced only weak suppression of the VM7 PN

response to 2-butanone (data not shown). This result is consis-

tent with a model whereby interglomerular inhibitory connections

are weak, and thus input to multiple glomeruli is required to

evoke measurable lateral inhibition.

Predicting PN Responses to Novel Odors
These findings imply that we should be able to predict the odor-

evoked firing rate of these PNs based on only two variables:

the firing rate of their presynaptic ORNs and the firing rate of

the total ORN population. To examine the quality of these predic-

tions, we measured the responses of VM7 ORNs to a set of test

odors that were not used to construct our model. As a proxy for

total ORN activity, we measured the antennal LFP for each test

odor (Figures 4A and 4B). Next, we used these measurements

to predict the odor responses of VM7 PNs on the basis of Equa-

tions 2 and 4, using the value of m that represents the sensitivity

of VM7 to lateral inhibition. Strikingly, predicted and measured

PN firing rates were in excellent agreement, with the input gain

model accounting for 95% of the variance in the data (Fig-

ure 4C). We repeated this procedure for glomerulus DL5, here

using the value of m derived for DL5. Again, the input gain model

made very good predictions, accounting for 87% of the variance

in the data (Figure 4D). The success of these predictions pro-

vides further support for the conclusion that the suppression

factor s varies linearly with the LFP (Figure S4). As expected,

the response gain control model did not accurately predict PN

responses (data not shown).

Gain Control Reformats Population Codes
What are the consequences of these transformations for the

way odors are encoded at the population level? To address

this, we first examined the statistical properties of ORN popula-

tion codes. We then used our model to simulate PN population

codes and ask how their properties are altered as compared to

ORNs. Ultimately, we are interested in how these transforma-

tions affect odor discrimination.



Figure 4. The Input Gain Control Model Accurately

Predicts PN Responses

(A) For each stimulus used to test the VM7 model, VM7

ORN responses (mean of 5–10 recordings) and antennal

LFP responses (mean of 6 recordings) are shown.

We selected test stimuli to span a wide distribution of

ORN and LFP responses.

(B) Same as (A), but for DL5 test stimuli.

(C) Predicted versus measured responses for VM7 PNs

(r2 = 0.95). Each point is a different test stimulus. Filled

symbols are predictions of the input gain model (Equa-

tion 2). Open symbols are predictions of the model without

inhibition (Equation 1). Each measured PN response is

a mean of 6–12 recordings, except one where n = 3.

(D) Same as (C), but for DL5 (r2 = 0.88). Each measured PN

response is a mean of 10 recordings.
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As the input to our model, we used ORN odor responses

measured by Hallem and Carlson (2006), comprising 176 olfac-

tory stimuli and 24 ORN types. This data set displays a strong

statistical regularity: stimuli that evoke a robust response in

a given ORN type also tend to evoke robust responses in many

ORN types (Figure 5A1). This can be quantified by principal

components analysis on the odor response vectors, which shows

that the first principal component (PC) accounts for fully 49% of

the variance in the data. This PC is essentially a proxy for stimulus

intensity (Figure S5). Another way to quantify this is to perform

pairwise comparisons between ORN types, which shows that

pairwise correlations are high (Figure 5B1). These correlations

have an important corollary: because some stimuli elicit weak

responses in many ORN types and others elicit robust responses

in many ORN types, stimuli produce widely varying levels of

total activity. We quantified this by computing the magnitude of

the population response evoked by each stimulus, defined as

the norm of the population response vector. This distribution is

broad (Figure 5C1), meaning that total odor-evoked activity varies

over a wide range. In short, all these analyses show that the

responses of ORNs are not statistically independent.

To model PNs without inhibition, we simulated the intraglo-

merular transformation by applying Equation 1 to the ORN

matrix. This transformation boosts the smallest responses,

while pushing the largest responses toward saturation (Fig-

ure 5A2). This transformation does not reduce statistical depen-
Neuron 66
dencies between glomeruli: the first principal

component still accounts for a high percentage

of the variance in the data (52%). Consistent

with this, pairwise correlations among

glomeruli are largely unchanged (Figure 5B2).

This is because some stimuli still recruit strong

responses across the population whereas

other stimuli do not, and this means that the

distribution of population response magnitudes

remains broad (Figure 5C2).

Next, we added lateral inhibition using the

input gain control model. This requires us to

know the total level of ORN activity evoked by

each odor. Instead of taking LFP measurements

for all these odors, we obtained an expression
for s as a function of ORN firing rates. We measured LFP

responses to a subset of the stimuli in the ORN data set, and

we fit a line to the relationship between these LFP responses

and the total number of ORN spikes evoked by each odor

(Figure S3). The fitted line is given by:

LFP =

 X24

i = 1

ri

!,
190 mV,s2=spikes (5)

where ri is the firing rate of the ith ORN type. Combining Equa-

tions (5) and (4) we obtain:

s = m,

 X24

i = 1

ri

!
=190 mV,s2=spikes (6)

The constant m in Equation 6 was obtained from the fit to VM7

data with the input gain model (Figure 3H). By combining Equa-

tions 2 and 6, we were able to simulate the ORN-PN transforma-

tion according to the input gain model (Figure 5A3). This transfor-

mation counteracts the tendency for intense stimuli to recruit

strong responses across the PN population, and for this reason

it decorrelates glomeruli (Figure 5B3). It also decreases the

magnitudes of the strongest population responses while leav-

ing the weaker responses relatively unaffected, and as a result

population response magnitudes are now more equal (Fig-

ure 5C3). As a result, the first principal component accounts
, 287–299, April 29, 2010 ª2010 Elsevier Inc. 291



Figure 5. Modeling PN Population Codes

for Odors

(A) ORN data from Hallem and Carlson (2006). (A1).

Stimuli (176 in total) are sorted top to bottom by the

number of spikes in the ORN population. Glomeruli

(24 in total) are sorted left to right. PNs were simu-

lated using the intraglomerular transformation

alone (A2) or the input gain control model (A3) or

the response gain control model (A4). The color

scale differs for ORN and PN matrices: maximum

is 290 spikes/s for ORNs and 165 for PNs.

(B) Cross-correlation values for each pairwise

comparison between glomeruli. Mean correlation

coefficients for each panel are 0.35, 0.41, 0.09,

and 0.15.

(C) Histograms show the distribution of population

response magnitudes (defined as the Euclidean

distance of the response from the origin of 24-

dimensional glomerular space). Each histogram

contains 176 values, one for each stimulus.
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for a smaller percentage of the variance in the data (25% versus

52%).

To simulate response gain control (Figure 5A4), we combined

Equations 3 and 6, and we obtained the constant m in Equation 6

by fitting this equation to VM7 data (data not shown). Like input

gain control, this transformation decorrelates glomeruli (Fig-

ure 5B4) and decreases the variance accounted for by the first

principal component (to 28%). Again, like input gain control, it

also tends to equalize population response magnitudes (Fig-

ure 5C4). But whereas input gain makes it more difficult for PN

responses to saturate, response gain control does nothing to

prevent saturation. This means that intense stimuli evoke similar

weak levels of activity in many PN types.

Finally, as a control, we shuffled the odor labels on each

ORN response vector before computing s. In this case, inhibi-

tion does not decorrelate glomeruli or equalize population

response magnitudes (data not shown). The key point is that

gain control only produces decorrelation and equalization

of responses if inhibition grows with increasing input to the

circuit.
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Input Gain Control Promotes
Selective Discrimination
Next, weexamined howthese transforma-

tions affect odor discrimination on the

basis of PN population responses. PNs

make excitatory synapses with third-order

neurons called Kenyon cells (KCs), which

are thought to integrate input from

different glomeruli. Many KCs are selec-

tive for a particular stimulus, and KCs

tend to respond in a binary fashion, firing

either zero spikes or just a few spikes

(Stopfer et al., 2003; Wang et al., 2004;

Turner et al., 2007). This motivated us to

ask how antennal lobe transformations

would affect the ability of a binary classifier

to respond selectively to a single stimulus.
We simulated a set of 176 binary linear classifiers (percep-

trons), one for each stimulus. The input to each perceptron was

a weighted sum of all glomerular responses, and the perceptron

responded if the sum exceeds its threshold. Input weights were

constrained to be nonnegative, but they were adjusted for each

perceptron so that it responded as selectively as possible to

one stimulus. For each of the four response matrices (Figure 5A),

we created a set of perceptrons with weights appropriate to that

matrix. Training and test stimuli were created by adding noise to

each response matrix, where the parameters of the noise were

drawn from PN data (Figure S6). Each set of perceptrons was

evaluated on the basis of its ability to correctly classify these

noisy test stimuli. Thresholds were adjusted so that the fraction

of false positives equaled false negatives.

First, we examined the case where PN responses are identical

to ORN responses (i.e., no transformation, using the matrix in

Figure 5A1). Perceptrons trained and tested on these responses

performed relatively poorly (Figure 6A). Specifically, strong

stimuli generated a high rate of false positives. This is because

strong stimuli generate strong responses in many glomeruli,



Figure 6. Input Gain Control Promotes Odor

Discrimination

(A–D) Confusion matrices show the performance

of 176 perceptrons, each trained to respond to

a single stimulus. Each row is a different stimulus,

and each column is a different perceptron. Stimuli

are arranged top-to-bottom in order of increasing

total number of ORN spikes. Perceptron 1 targets

odor 1, perceptron 2 targets odor 2, etc. Values

along the diagonal indicate the probability of a

correct hit, and values off the diagonal indicate

the probability of a false positive; see color scale

in (D). Perfect performance would be represented

by red squares on the diagonal and blue off-

diagonal.

(E) Mean performance for each set of perceptrons,

averaged across 500 independent networks, ± SD.

Correct performance = percent hits correct =

percent misses correct (see Experimental

Procedures).
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and thus tend to drive the weighted sum in all perceptrons above

threshold.

Next, we examined the effect of the intraglomerular transfor-

mation, without lateral inhibition. Perceptrons trained and tested

on this matrix performed better (Figure 6B). This is because the

intraglomerular transformation selectively boosts PN responses

to weak ORN inputs. This makes it easier to find weights that

yield a selective response to weak stimuli. However, every per-

ceptron still tended to respond inappropriately to many strong

off-target stimuli.

Input gain control largely solves this problem (Figure 6C). This is

because this model normalizes PN responses by the total level

of ORN input, and so strong stimuli no longer elicit so many false

positives. By comparison, the response gain control model per-

forms more poorly (Figure 6D). Like input gain control, this model

has the virtue of normalizing responses to strong stimuli. How-

ever, this model compresses the PN dynamic range when the total

level of ORN input is strong, and so strong stimuli elicit weak

responses in all glomeruli. This makes it difficult to find a threshold

that maximizes correct hits while also minimizing false positives.
Neuron 66, 287–2
Input Gain Control Promotes
Intensity Invariance
Next, we asked perceptrons to respond

selectively to an odor across a range of

concentrations. This task is inspired by

the experimental finding that some KCs

respond selectively to a particular odor

regardless of its concentration (Stopfer

et al., 2003; Wang et al., 2004). Because

we had available data on 19 odors at

each of three concentrations, we trained

19 perceptrons on this task, one for

each odor.

Again, we first examined the casewhere

PN responses are identical to ORN

responses (no transformation). These

perceptrons did relatively poorly (Fig-
ure 7A) because low concentrations evoke such weak responses

that they are not easily classified with high concentrations. The

intraglomerular transformation improves performance (Figure 7B)

because it selectively boosts weak responses, and so brings low

and high concentrations closer together. Input gain control

creates the best performance (Figure 7C) because it normalizes

for intensity, and this makes responses to different concentrations

more similar. Response gain control also normalizes for intensity,

but it performs more poorly than input gain control (Figure 7D).

Because high concentrations elicit intense lateral inhibition which

suppresses all PN responses uniformly, these strong stimuli elicit

small population responses, and it becomes difficult to maximize

correct hits while minimizing false positives.

Increasing Total Activity Makes Responses
More Transient
For simplicity, we have thus far quantified neural activity as mean

firing rates over the stimulus period. However, PN responses do

not remain constant over the stimulus period. In order to investi-

gate how lateral inhibition shapes these dynamics, we compared
99, April 29, 2010 ª2010 Elsevier Inc. 293



Figure 7. Input Gain Control Promotes

Concentration-Invariant Discrimination

(A–D) Confusion matrices show the perfor-

mance of 19 perceptrons trained to respond to

a chemical stimulus regardless of concentration.

Perceptron 1 is trained to target odor 1 at low,

medium, and high concentrations; perceptron

2 is trained to target odor 2 at low, medium,

and high concentrations, etc. Perfect perfor-

mance would be represented by red on the

diagonal and blue off-diagonal in every square

matrix.

(E) Mean performance for each set of perceptrons,

averaged across 500 independent networks, ± SD.
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the time course of PN responses to different levels of private

and public input. We found that, as a general rule, mixing in

a public odor tended to make PN responses to private input

more transient (Figures 8A and 8B).

We quantified transience as the ratio of the peak firing rate to

the mean firing rate (Figure 8C). As the public odor concentration

increased, the peak-to-mean ratio systematically increased. This

is probably because a strong public stimulus recruits ORNs

faster. Consistent with this idea, higher public odor concentra-

tions produce a faster increase in the antennal LFP (Figure 8D).

Faster recruitment of the ORN population should recruit faster

lateral inhibition, and thus more transient PN responses.

However, the effect of the public odor on PN dynamics was

only large when the private odor concentration was low (Figures

8A–8C). This suggests that increasing total ORN activity only

makes PN responses more transient when direct input is weak.

This would be consistent with an input gain control model,

because in this model the effect of lateral inhibition is strongest

when PNs are far from saturation. Thus, input gain can account

for why lateral inhibition affects the dynamics of some PN

responses more than others.

DISCUSSION

Normalization Models in Olfaction and Vision
As originally formulated in the visual system, the normalization

model of gain control includes two conceptually separate steps:
294 Neuron 66, 287–299, April 29, 2010 ª2010 Elsevier Inc.
a saturating function and a normalization

step (Heeger, 1992). The first step—the

saturating function—is often fit by a

hyperbolic ratio function (Naka and Rush-

ton, 1966; Albrecht and Hamilton, 1982):

RðcÞ= Rmax

�
cn

cn + sn

�
(7)

where the variable c is the contrast of the

visual stimulus, s is a constant, and n is

a constant exponent (generally empiri-

cally determined to be > 1). Here we

show that a similar function (Equation 1)

describes the transformation that occurs

within each glomerular channel.
The second step—normalization—has been modeled in the

visual system as an increase in the contrast needed to drive

a neuron to half-maximum firing rate:

RðcÞ= Rmax

�
cn

cn + sn + sn

�
(8)

where the suppression factor s depends on stimulus contrast

and can be rather nonselective for other stimulus features,

presumably reflecting summed input from neurons with diverse

stimulus preferences (Heeger, 1992). Versions of this model

describe neural activity in several visual cortical areas (Carandini

et al., 1997; Cavanaugh et al., 2002; Zoccolan et al., 2005), and

this model has also been extended to describe the effects of

attention (Lee and Maunsell, 2009; Reynolds and Heeger,

2009). There are differences between the models in these

studies; for example, s can be either nonselective or selective.

Generally an exponent >1 is required to fit the data (Albrecht

and Hamilton, 1982; Heeger, 1992; Carandini and Heeger,

1994; Reynolds and Heeger, 2009), although the mechanisms

underlying this are uncertain. Nevertheless, the essential con-

cept captured by this equation is simple: the activity of each

neuron is normalized by activity in a larger pool of neurons.

Here we show that a similar function (Equation 2) describes

gain control in the Drosophila antennal lobe. By independently

manipulating direct and lateral input to a PN, we show that the

saturating transformation is intrinsic to each glomerular channel,

whereas the normalization step is due to lateral inhibition. Thus,



Figure 8. Increasing Total Activity Makes

PN Responses More Transient

(A) Mixing in a public odor modulates the

dynamics of PN responses to weak private input

(2-butanone 10�6). The highest concentration of

the public odor has the largest effect. PSTHs are

averages of 10–11 recordings, reproduced from

Figure 2B.

(B) The same public odor has smaller effects on PN

dynamics when the private odor is stronger (10�5).

(C) Overall, increasing total ORN activity makes

PN responses more transient. Transience is quan-

tified as the ratio of peak firing rate to the mean

firing rate, mean ± SEM. Each curve represents

a different concentration of 2-butanone (10�6,

10�5, 10�4), and each point within a curve is a

different concentration of pentyl acetate (0, 10�6,

10�5, 10�4, 10�3). The dynamics of responses to

the lowest concentration of 2-butanone (10�7)

were not analyzed because these responses are

close to zero.

(D) A strong public odor elicits a faster field

potential response than a weak odor (averages

of 19 and 9 LFP recordings, respectively, normal-

ized to the same amplitude). Data reproduced

from Figure 2A.
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at least in this circuit, these two transformations are not just

conceptually distinct but also mechanistically distinct.

Population Codes for Odors
Our results show that both the intra- and interglomerular trans-

formations promote odor discrimination by a linear decoder.

First, the intraglomerular transformation selectively boosts

weak ORN inputs. Because responses to weak stimuli are pref-

erentially amplified, it becomes easier to find a combination of

glomerular weights that produces a selective response to one

of these stimuli. A recent theoretical study pointed out that

this type of transformation should promote linear separation

(Luo et al., 2008), and our results reinforce that conclusion.

Second, the normalization step decreases the steepness of

the intraglomerular transformation by a factor proportional to

total input. As a result, activity in different glomeruli is decorre-

lated. This agrees with theoretical studies showing that nor-

malization makes the responses of different neurons more statis-

tically independent (Schwartz and Simoncelli, 2001). Another

precedent for our results is a recent theoretical study pointing

out that global lateral inhibition should decorrelate the odor

selectivity of different glomeruli (Cleland and Sethupathy, 2006),

although that study postulated a different type of intraglomerular

transformation than the function we describe here. Importantly,

we show that this type of normalization makes it easier for a linear

decoder to respond selectively to a particular stimulus. This is

because stimuli of different intensities now evoke population

responses with a more similar magnitude.

It is useful to consider both of these steps—boosting and

normalization—in terms of efficient coding. The efficient cod-

ing hypothesis has two parts: (1) each neuron should use its
dynamic range uniformly, and (2) responses of different neurons

should be independent (Simoncelli, 2003). Most ORN responses

are weak, so ORNs do not use their dynamic range uniformly.

By selectively boosting weak inputs, the intraglomerular trans-

formation creates PN responses that use the available dynamic

range more uniformly (Bhandawat et al., 2007). Meanwhile, most

ORNs are also correlated with each other. By creating compet-

itive interactions between neurons in different glomeruli, nor-

malization decorrelates their responses. (Note the distinction

between decorrelating neurons and decorrelating representa-

tions: global lateral inhibition does the former but not the latter;

see Figure S7.)

A previous study reported that PN responses are not substan-

tially more decorrelated than ORN responses (Bhandawat et al.,

2007). Two considerations reconcile our findings with that study.

First, we show here that although lateral inhibition tends to

decorrelate PN odor responses, the intraglomerular transforma-

tion tends to correlate them. Thus, the net effect of both trans-

formations is less decorrelating than lateral inhibition alone.

Second, the previous study used stimuli spanning a narrow

range of intensities. By contrast, the stimuli in our simulations

here span a wide range, which leads to a larger decorrelation.

Toward Concentration-Invariant Odor Representations
Functional imaging studies in the olfactory bulb have shown

that different concentrations of the same odor elicit different

levels of activity in the bulb, but these spatial maps are similar

after signals are normalized to the same amplitude (Johnson

and Leon, 2000; Wachowiak et al., 2002; Cleland et al., 2007).

For this reason, normalization via lateral inhibition has been

proposed as a basis for concentration-invariant odor
Neuron 66, 287–299, April 29, 2010 ª2010 Elsevier Inc. 295
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representation in the olfactory bulb (Johnson and Leon, 2000;

Wachowiak et al., 2002; Cleland et al., 2007) and the antennal

lobe (Sachse and Galizia, 2003; Asahina et al., 2009). Here, we

provide evidence for this computation at the level of ORN input

to Drosophila antennal lobe glomeruli.

Drosophila can discriminate between different concentrations

of the same odor (Borst, 1983). If lateral inhibition tends to

normalize for intensity, how is this possible? One potential expla-

nation is that normalization is incomplete: the most intense

stimuli in our simulation evoke responses that are still substan-

tially larger than the weakest responses. Incomplete normaliza-

tion may be a useful way to preserve information about stimulus

intensity while promoting a more efficient representation.

Glomerulus-Specific Sensitivity to Inhibition
Our results show that glomeruli differ in their sensitivity to lateral

inhibition. This appears as differing values of the factor m that

expresses how steeply lateral inhibition depends on total ORN

activity. Although we examined only two glomeruli in detail, our

analysis of a published data set comprising seven additional

glomeruli (Bhandawat et al., 2007) suggests that the values of

m for VM7 and DL5 fall within the typical range. Another finding

from this study is that one of the four glomeruli we examined

(DM1) is modulated by inhibition arising from odor-evoked intra-

glomerular GABA release and/or tonic interglomerular GABA

release. This appears as a higher value of the semisaturation

constant s for this glomerulus.

This heterogeneity does not affect our overall conclusions

about the consequences of gain control. If instead of using the

value of m for VM7 as the default we randomly assign to each

glomerulus a value of m intermediate between the values for

VM7 and DL5, then the overall effects of inhibition are weaker

but qualitatively unchanged. Similarly, the results of our simula-

tions are qualitatively unchanged if we randomly assign a high

value of s to a subset of glomeruli (data not shown).

Given this, it is worth asking why heterogeneity might be

useful. We speculate that some glomeruli might be specialized

in their sensitivity to GABAergic inhibition because they respond

preferentially to an odor with special behavioral relevance or

unusual natural statistics. Mechanistically, the explanation for

heterogeneity might lie in glomerulus-specific levels of GABA

receptor expression (Root et al., 2008).

Circuit Mechanisms: Connectivity between Glomeruli
It is generally thought that specific connectivity between glo-

meruli is important for olfactory processing (Laurent, 2002;

Lledo et al., 2005). Here we show that specific connectivity is

not required to account for PN odor responses: good fits to

data can be obtained by assuming all-too-all connectivity and

uniform connectivity weights. We found that sparser connec-

tivity can also generate good fits (Figure S8) because the

responses of different ORN types are correlated with each

other, and so pooling input from only a subset of glomeruli

produces an effect similar to pooling total input. However,

most individual Drosophila antennal lobe local neurons innervate

the majority of glomeruli (Das et al., 2008; Lai et al., 2008), and

this implies a comparatively dense pattern of interglomerular

connections.
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In the mammalian olfactory bulb, one local interneuron can-

not connect all glomeruli. However, dense nonspecific connec-

tivity could be implemented on a local scale. Nearby glomeruli

in the bulb are almost as diverse in their odor selectivity

as distant glomeruli (Soucy et al., 2009). Thus, the summed

responses of local glomeruli might produce an inhibitory signal

similar to the sum of all glomeruli. Alternatively, if mammalian

ORN types are not as correlated in their odor selectivity as

Drosophila ORN types are, then optimal connectivity might be

sparse and specific (Fantana et al., 2008).

It should be noted that excitatory lateral connections coexist in

this circuit with inhibitory ones (Olsen et al., 2007; Root et al.,

2007; Shang et al., 2007). In this study, we found that the net

effect of lateral input was always inhibitory. However, this does

not imply that lateral excitatory connections make no contribu-

tion—only that they do not dominate.

Cellular Mechanisms: Pre- versus Postsynaptic
Inhibition
Lateral inhibition in the adult Drosophila antennal lobe has

a mainly presynaptic locus (Olsen and Wilson, 2008; Root et al.,

2008). This raises the question of why it might be useful to imple-

ment inhibition pre- rather than postsynaptically. Our results

suggest a novel answer. We show that lateral inhibition in this

circuit produces input gain control rather than response gain

control, and input gain control has some attractive properties. It

is easy to see why presynaptic inhibition might produce input

gain control: any inhibitory process that acts prior to the nonline-

arity in the input-output function will tend to make it more difficult

to reach saturation but will not change the level at which output

saturates. The major nonlinearities in the intraglomerular trans-

formation are short-term synaptic depression and the postsyn-

aptic refractory period (Kazama and Wilson, 2008), whereas pre-

synaptic inhibition is thought to modulate an earlier step, i.e.,

presynaptic calcium influx. In other circuits the mechanisms of

normalization may be different, and may not involve GABAergic

inhibition (Carandini et al., 2002; Freeman et al., 2002).

Dynamics of Gain Control
We found that increasing total ORN activity (by increasing the

public odor concentration) made PN responses more transient.

This result has parallels in other sensory modalities, where

increasing stimulus intensity generally decreases neuronal

integration times. For example, in the retina, increasing the lumi-

nance of a visual stimulus produces more transient responses in

ganglion cells (Shapley et al., 1972; Enroth-Cugell and Shapley,

1973). In visual cortex, increasing the contrast of a periodic visual

stimulus advances the phase of neural responses (Dean and

Tolhurst, 1986). Similarly, increasing sound intensity narrows

the integration time of auditory cortical neurons (Nagel and

Doupe, 2006). These changes create an adaptive tradeoff that

should maximize information transmission over a range of stim-

ulus intensities (Atick, 1992). Long integration times should allow

neurons to overcome the effects of noise when stimulus intensi-

ties are low, whereas short integration times should maximize

temporal resolution of stimulus fluctuations when stimulus inten-

sities are high. Our findings extend this principle to olfactory

processing.
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Adaptive changes in integration time have been recognized

as a natural extension of normalization models. For example, if

normalization is implemented by an increase in postsynaptic

inhibitory conductances, then the resulting decrease in the post-

synaptic membrane time constant would shorten the integration

time (Carandini and Heeger, 1994; Carandini et al., 1997). How-

ever, in the Drosophila antennal lobe, lateral inhibition is largely

presynaptic (Olsen and Wilson, 2008), so this mechanism is

unlikely to apply. Instead, our results suggest an alternate mech-

anism: shorter integration times are likely due to increasingly

rapid recruitment of lateral inhibition by increasingly intense

afferent activity.

Limitations of the Model
First, our model is based on measurements from only a few

glomeruli. In pilot experiments we explored other candidates,

but we could not find private odors for these glomeruli. This

reflects the constraint that the private odor must be selective

even at concentrations high enough to approach Rmax.

Second, we have not modeled the dynamics of neural activity.

Because the input data set for our model consists of ORN firing

rates averaged over a 500 ms time period (Hallem and Carlson,

2006), our model is not able to consider finer timescales. ORN

responses are themselves dynamical, and these dynamics

depend on both the odor and the ORN (Hallem and Carlson,

2006). PN response dynamics are also characteristically faster

than ORN response dynamics (Bhandawat et al., 2007).

Modeling these dynamics will require a more systematic under-

standing of these processes.

Finally, the usefulness of any transformation will depend on the

decoder and the task. Our model decoders are inspired by

the properties of real higher-order olfactory neurons. However,

some aspects of our model decoders are unrealistic—for exam-

ple, each pools input from all glomeruli. Unraveling the actual

connectivity of the higher-order olfactory circuit should help us

better constrain our models. Also, the tasks we set our decoders

are probably easy compared to natural olfaction, which is compli-

cated by turbulence and background odors. Understanding how

these factors affect olfactory encoding should help us gain insight

into the tasks this circuit has evolved to perform.

EXPERIMENTAL PROCEDURES

Fly Stocks

Fly stocks were kindly provided as follows: NP5221-Gal4, NP3062-Gal4,

NP3481-Gal4 (Kei Ito and Liqun Luo); Or92a-Gal4 (Leslie Vosshall); UAS-

DTl/CyO (Leslie Stevens). The following were obtained from the Bloomington

Stock Center: UAS-CD8GFPI, UAS-CD8GFPII, UAS-CD8GFPIII, Or42bEY14886

(see Figure S1), Or42af04305 (see Figure S1).

Electrophysiological Recordings

The total number of observations in this study comprises 1299 ORN measure-

ments, 225 LFP measurements, and 591 PN measurements (total n summed

across all experiments). Each measurement represents the mean of four

consecutive trials with the same stimulus. ORN spikes were recorded extracel-

lularly from sensilla on the surface of the maxillary palp or antenna.

The antennal LFP was recorded with an electrode in the body of the antennal

funiculus. Whole-cell patch-clamp recordings were made from PN somata in

current-clamp mode. Recordings were targeted to specific PNs by labeling

them with GFP. See Supplemental Experimental Procedures for details.
Olfactory Stimuli

See Supplemental Experimental Procedures for details.

Data Analysis

Quantifying Neural Responses

Each cell was tested with multiple stimuli, typically with four trials per stimulus

spaced 40–60 s apart. The response magnitude for each cell/stimulus combi-

nation was quantified as the trial-averaged spike rate during the 500 ms odor

stimulus period, minus the trial-averaged baseline spike rate during the

preceding 500 ms. To generate a peristimulus time histogram, we counted

the number of spikes in 50 ms bins that overlapped by 25 ms. LFP recordings

were quantified as the integral during the 500 ms odor stimulus period, minus

the integral during the 500 ms preceding the stimulus. All these response

measures were first averaged across trials within an experiment, and then

reported as mean ± SEM across experiments.

Fitting Input-Output Functions

The input-output functions in Figure 1 were determined by fitting the private

odor responses for each glomerulus to Equation 1. Rmax and s were free

parameters. Rmax = 170, 167, 163, and 144, and s = 16.3, 11.8, 12.4, and

44.8, for glomeruli DM4, DL5, VM7, and DM1, respectively. Equation 1 fits

these data better than the logarithmic function used in previous studies (Bhan-

dawat et al., 2007; Olsen and Wilson, 2008).

In Figure 3, each input-output function within a panel corresponds to

a different concentration of pentyl acetate. Here we used Equation 2 for the

input gain model and Equation 3 for the response gain model. The parameters

Rmax and s were derived separately for VM7 and DL5 from the fits in Figure 1

and were held constant across all concentrations of pentyl acetate. Thus, the

only free variable in these fits was s.

In Equations 1–3, the input variables (ORN, s, s) are raised to an exponent

(1.5). We use this exponent because it provides the best fit to our data.

We determined this by fitting the data in Figure 3 with different exponents

between 1 and 2 in increments of 0.1. The mean squared error had a minimum

for an exponent of 1.5 and 1.6 for glomeruli DL5 and VM7, respectively.

Choosing an exponent of 1.5 for VM7 produced only a slight decrease in fit

quality and allowed a constant exponent to be used for all equations.

Predicting PN Odor Responses Based on the LFP

In Figure 4, PN responses to novel stimuli were predicted from Equation 2 on

the basis of two variables: the presynaptic ORN response to that stimulus

(ORN) and the value of s corresponding to that stimulus. Values of s were

derived from the LFP response to each stimulus according to Equation 4.

The relationship between s and the LFP was obtained from the linear fit

in Figure 3H (m = 10.63 for VM7 and 4.19 for DL5). Each LFP value in

Figure 3H is the sum of the LFP response to one pentyl acetate concentration

(Figure 2A, different for each curve) and the LFP response to the private stim-

ulus alone (the same for each curve). Summation is reasonable because public

and private odors do not activate the same ORNs, and because the LFP scales

linearly with summed ORN firing rates (Figure S3). To fit a curve, we needed to

represent the contribution of the private stimuli to the summed LFP with

a single value, but in reality each curve was constructed with a range of the

private odor concentrations, all of which elicit slightly different small LFP

responses (Figure S1); for simplicity, we averaged the LFP measured for all

these concentrations to estimate the contribution of private stimuli to the LFP.

Modeling

Simulating PN Responses

In Figures 5–7 we used the data from Hallem and Carlson (2006) to stimulate

PN population codes. Because this data set includes only 24 of the 50 ORN

types, we simulated only 24 glomeruli. Unless otherwise noted, we used the

following parameters for all glomeruli: Rmax = 165 spikes/s and s = 12

spikes/s. To simulate the PN matrix without inhibition, we used Equation 1.

The input gain PN matrix was simulated using Equations 2 and 6. The constant

m in Equation 6 was set to 10.63 for all glomeruli. The response gain PN

response matrix was simulated using Equations 3 and 6 (m = 0.164). For all

simulated PN responses, if the presynaptic ORN odor response was a negative

number (a suppression of basal firing rate), then the PN response was set to

zero. Population response magnitude (Figure 5C) was quantified for each stim-

ulus as the norm of the response vector in 24-dimensional ORN or PN space:
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krk=

ffiffiffiffiffiffiffiffiffiffiffiffiX24

i = 1

r2
i

vuut (9)

where ri is the firing rate of the ith ORN type or PN type.

Decoding Simulated PN Responses with a Linear Classifier

Each perceptron receives input from all 24 glomeruli. The perceptron classifies

stimuli by computing a weighted sum on its inputs and responding if this sum

crosses a threshold, c. Its response is binary:

response = 1 if; c%wiri + wi + 1ri + 1 + / + w24r24 (10)

response = 0 if; c>wiri + wi + 1ri + 1 + / + w24r24

where ri is the response of the ith glomerulus and wi is the weight of that

glomerulus. The weights for each perceptron were derived using the normal-

ized perceptron learning rule:

wnew
i = wold

i + 3,
pi

kpk

where kpk is the norm of the training input vector, pi is the input from ith

glomerulus to the perceptron, and 3 is the difference between the perceptron’s

output and target value. Additionally, we constrained the sign of the weights to

be nonnegative. If the updated weight took a negative value this weight was

reverted to its previous nonnegative value before presenting the next training

input. The threshold c was constrained to be the same for all perceptrons

within the same set and was adjusted during training so that the false hits

rate was equal to the rate of false misses.

For each set of perceptrons, we generated 100 noisy training matrices by

picking the appropriate matrix in Figure 5A and adding Gaussian noise to

each entry (Figure S6). Noise was drawn independently for each entry in every

training matrix. Weights were adjusted for 100 iterations of the learning rule, by

which time weights had converged. We tested performance by presenting the

set of perceptrons with 50 noisy test matrices, generated in the same way as

for the training matrices. Results in Figures 6 and 7 are shown as the mean for

500 independent networks (i.e., 100 training iterations, followed by 50 tests,

this repeated 500 times).

We trained and tested perceptrons separately for two classification tasks.

For the first task we generated four sets of 176 perceptrons, each designed

to respond selectively to one out of the 176 stimuli. For the second task we

generated four sets of 19 perceptrons, each designed to respond to the

same odor across three different concentrations (19 3 3 = 57 stimuli). These

57 stimuli are only a subset of the 176 stimuli because Hallem and Carlson

(2006) tested most odors at only one concentration. The low and medium

concentrations of each odor represent 100-fold and 10,000-fold dilutions of

the high concentration.

Alternative Models of Gain Control and Odor Discrimination

See Supplemental Experimental Procedures.

SUPPLEMENTAL INFORMATION
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