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SUMMARY

One of the proposed canonical circuit motifs em-
ployed by the brain is a feedforward network where
parallel signals converge, diverge, and reconverge.
Here we investigate a network with this architecture
in the Drosophila olfactory system. We focus on a
glomerulus whose receptor neurons converge in an
all-to-all manner onto six projection neurons that
then reconverge onto higher-order neurons. We
find that both convergence and reconvergence
improve the ability of a decoder to detect a stimulus
based on a single neuron’s spike train. The first trans-
formation implements averaging, and it improves
peak detection accuracy but not speed; the second
transformation implements coincidence detection,
and it improves speed but not peak accuracy. In
each case, the integration time and threshold of the
postsynaptic cell are matched to the statistics of
convergent spike trains.

INTRODUCTION

The maximum rate of information flow grows with the number of

parallel channels in a transmission line (Stein, 1967). This allows

for the transmission of more information over a fixed time win-

dow or, equivalently, the need for less time to transmit a fixed

amount of information. Accordingly, sensation typically begins

with a large array of peripheral sensors. For example, vision be-

gins with a large array of photoreceptors, and hearing begins

with a large array of hair cells (Sterling and Laughlin, 2015).

The olfactory system represents another example of this strat-

egy. The detailed architecture of the olfactory system has been

most fully characterized in Drosophila (Figure 1A), but the verte-

brate olfactory system has a similar architecture (Bargmann,

2006). Each Drosophila odorant receptor is expressed by �40

olfactory receptor neurons (ORNs) in each antenna, on average.

All the ORNs that express the same receptor have similar odor

response properties (de Bruyne et al., 1999, 2001), and they proj-

ect their axons to the same glomerulus in the brain (Vosshall

et al., 2000). There, they converge onto postsynaptic projection

neurons (PNs). Each PN pools input from every single ORN in its

cognate glomerulus (Kazama andWilson, 2009). Given the theo-
1014 Neuron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc.
retical benefits of pooling from parallel channels, we would

expect to detect a near-threshold odor stimulus more quickly

and accurately based on a single PN spike train, as compared

to a single ORN spike train.

The benefits of pooling from parallel channels are not neces-

sarily limited to the periphery: pooling could also be useful in

central circuits. Specifically, a signal might diverge onto many

neurons, whose activity then converges at a later stage. This

could allow the brain to reduce noise accumulated indepen-

dently in transmission along the parallel channels (Alonso

et al., 1996; Faisal et al., 2008). Divergent neural architecture is

widespread in central sensory circuits. For example, in the retina,

each photoreceptor signal diverges onto many postsynaptic bi-

polar cells (Cohen and Sterling, 1990). In the cochlea, each hair

cell signal diverges onto many postsynaptic ganglion cells (Lib-

erman, 1980). In the Drosophila olfactory system, each ORN

axon diverges to synapse onto all the identical ‘‘sister’’ PNs in

the same glomerulus (Kazama and Wilson, 2009). However, it

is difficult to show that the neurons that receive divergent signals

actually reconverge onto a common postsynaptic neuron. Even

if they do, the effect of pooling will not be straightforward,

because these convergent inputs may be correlated as a conse-

quence of having diverged upstream.

Here we use a single olfactory coding channel inDrosophila as

a setting to investigate these questions.We study a population of

�40 ORNs that diverge and converge, in an all-to-all manner,

onto six postsynaptic PNs.We show that these sister PNs recon-

verge onto a specific class of lateral horn neurons (LHNs). We

investigate how the representation of a near-threshold stimulus

is transformed at the ORN-to-PN step and again at the PN-to-

LHN step. We find that the function of convergence is different

in the two cases: the first step implements averaging, and the

second step implements coincidence detection. In each case,

the integrative properties of the postsynaptic cell match the sta-

tistics of their convergent presynaptic spike trains.

RESULTS

Sensory Processing across Three Layers of Olfactory
Circuitry
Our approach in this study was to inject a brief packet of spikes

into the ORNs presynaptic to one glomerulus and to trace this

signal through three synaptically connected layers: from ORNs

to PNs, and then from PNs to LHNs (Figure 1A). We selected

glomerulus DA1 for these experiments because we have good

mailto:rachel_wilson@hms.harvard.edu
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Figure 1. Sensory Processing across Three Layers of Olfactory

Circuitry

(A) Schematic of feedforward circuitry from a single olfactory glomerulus

(DA1). About 40 ORNs in each antenna project to this glomerulus. Each ORN

axon diverges to contact all the PNs in this glomerulus, and conversely each

PN receives convergent input from all 40 ORNs. PN axons then reconverge

onto LHNs. ORNs express channelrhodopsin-2, and we use light to inject a

brief packet of spikes into the ORNs.

(B) Rasters showing spikes in a DA1 ORN, a DA1 PN, and a postsynaptic LHN

in response to repeated presentations of the primary stimulus used throughout

this study (a 100 ms flash).

(C) ORN and PN firing rates (±SEM) evoked by a range of optogenetic stimuli of

different intensities. Each symbol represents a different stimulus. The open

circle denotes the primary stimulus used throughout this study. Dashed line

denotes unity slope.

(D) As in (C), but for PN and LHN firing rates. PN-LHN gain is lower than ORN-

PN gain (ANCOVA, p = 7.6 3 10�13).

(E) Mean firing rate over time in ORNs and PNs (±SEM across cells; n = 58

ORNs and 44 PNs).

(F) As in (E), but comparing PNs and LHNs (n = 25 LHNs).

(G) Mean firing rates from (E) and (F) normalized to their peak.

(H) Spontaneous firing rates, mean (left), and SD (right). Each symbol is a

different recording (open circles are cell-attached recordings; filled circles are

whole-cell current clamp recordings). Mean rates are higher in PNs than in

ORNs (t test, p = 2.4 3 10�13) or LHNs (t test, p = 5.1 3 10�5). SDs are also

higher in PNs than in ORNs (t test, 3.7 3 10�13) or LHNs (t test, 3.0 3 10�4).

N

genetic access to the DA1 ORNs and their downstream PNs and

LHNs in the brain. The benefits of pooling many ORNs might be

most obvious for near-threshold stimuli, and so in this study

we chose to focus on stimuli that elicit only about one spike

per trial per ORN. It can be difficult to control odor stimuli

near threshold, so we used an optogenetic approach instead.

We expressed the light-activated cation channel channelrho-

dopsin-2 in DA1 ORNs, and we stimulated these neurons by

flashing light on one antenna. To measure spikes in DA1

ORNs, we made in vivo extracellular recordings. In separate

experiments, we made genetically targeted in vivo patch-clamp

recordings from PNs postsynaptic to glomerulus DA1 and from a

specific class of LHNs that are postsynaptic to these PNs (Fig-

ures S1 and S2).

In pilot experiments, we identified a set of flash parameters

that could reliably evoke small numbers of spikes in ORNs. Vary-

ing the duration and intensity of the flash evoked different

numbers of spikes (Figure S3). In most of this study, we focus

for simplicity on a single stimulus, a flash that elicited an average

of 1.7 spikes per ORN per trial (Figure 1B). The onset of an odor

can elicit a similar number of ORN spikes in the same time win-

dow. Thus, this ORN response likely resembles spiking patterns

that occur in nature (Figure S4).

Overall, there was a linear relationship between ORN and PN

spike counts in this near-threshold regime. PN spike rates

were consistently about 3-fold larger than ORN spike rates (Fig-

ure 1C). When we compared PN and LHN spike counts, we

found that the input-output curve was again linear, but the slope

was significantly lower, just below unity (Figure 1D).

ORN responses were more transient than the stimulus itself

(Figure 1E; see also Figure S4). As compared to ORN responses,

PN responses were more prolonged (Figure 1E). However, LHN

responses were more transient than those of PNs (Figures 1F

and 1G). This implies that there are mechanisms that cause

LHNs to respond preferentially to the onset of PN activity.

In short, a brief and minimal packet of spikes is transformed in

complementary ways as it travels through the first two feedfor-

ward layers of this system. The first transformation is high gain

and broadens the time course of the spike packet. The second

transformation is lower gain and compresses the spike packet

in time.

Multilayered Circuitry Improves Accuracy and Speed
Importantly, ORNs, PNs, and LHNs all fire spontaneously even in

the absence of a stimulus. This poses a classic signal detection

problem. Stimulus detection is only accurate if spontaneous

firing is reliably different from stimulus-evoked firing (van Dron-

gelen et al., 1978). Notably, for the three types of synaptically

connected neurons we are focusing on here, spontaneous rates

are significantly different (Figure 1H). Canwe detect a weak stim-

ulusmore rapidly and accurately on the basis of spike trains from

an ORN, a PN, or an LHN? To address this question, we took the

perspective of an observer trying to determine whether a stim-

ulus was present or not during a given window of time, on the

basis of individual spike trains.

To carry out this analysis, wemust first decide on the timewin-

dow over which the observer can count spikes. In Drosophila,

behavioral responses to odor can occur with latencies as short
euron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc. 1015



0 20 40 60 80 100
0

1

2

3

time after light onset (msec)

ac
cu

ra
cy

 (d
ʹ )

B

C

A

D

0 3 6
0

1

pr
ob

ab
ili

ty

0 3 6
0

1

pr
ob

ab
ili

ty

0 3 6
0

1

spike count

pr
ob

ab
ili

ty

ORN

PN

LHN

0

5

10

15

pe
ak

 a
cc

ur
ac

y

O
R

N

P
N

LH
N

20

40

60

80

>120
la

te
nc

y 
to

d
ʹ 

= 
1

(m
se

c)

n.s. ** n.s.

O
R

N

P
N

LH
N

ORN
PN
LHN

first spike decoder
E F G

hit
rate

false
alarm
rate0

50

100

%
 o

f t
ria

ls

O
R

N
P

N
LH

N

60

70

80

90

ne
t a

cc
ur

ac
y 

(%
)

O
R

N
P

N
LH

N

* *

28

30

32

34

36

38

fir
st

 s
pi

ke
 la

te
nc

y 
(m

se
c) *

O
R

N
P

N
LH

N

spontaneous

evoked

spike count decoder

Figure 2. Multilayered Circuitry Improves Accuracy and Speed

(A) Spike count histograms for 80 ms time windows containing a stimulus

(solid) or no stimulus (dashed). Data are accumulated across multiple trials for

a typical ORN, PN, and LHN. The accuracy of stimulus detection is assessed

using the metric d0. This value is the separation between the means of the two

distributions (mevoked � mspontaneous) normalized by the root of the average

variance of the two distributions (O(1/2 (s2
evoked + s2

spontaneous))).

(B) Median accuracy (d0) over time for ORNs, PNs, and LHNs. An 80 ms win-

dow was slid forward in time, and resulting d0 values were plotted at the end

point of each window. This and all subsequent panels in this figure are

computed on the same dataset (n = 58 ORNs, 44 PNs, 25 LHNs).

(C) Peak accuracy (d0) for individual ORNs, PNs, and LHNs. PNs are signifi-

cantly different from ORNs (Wilcoxon rank-sum test, p = 0.013), but not

significantly different from LHNs (Wilcoxon rank-sum test, p = 0.25). Solid bars

denote medians. PN detection accuracy is actually lower than our theoretical

expectation, due to high spontaneous activity in PNs; see Figure S8.

(D) Latency to baseline detection accuracy (d0 = 1) for individual ORNs, PNs,

and LHNs. Latency is similar for ORNs and PNs (Wilcoxon rank-sum test, p =

0.33), but shorter for LHNs than for PNs (Wilcoxon rank-sum test, p = 0.015).

Solid bars denote medians.

(E) Mean hit rates and false alarm rates for a decoder operating with a

threshold of a single spike (±SEMacross cells). The hit rate is the percentage of

trials with at least one spike during the stimulus period. The false alarm rate is

the percentage of trials with at least one spike during a period of equal length

(100 ms) when no stimulus was presented.

(F) Mean net accuracy for the decoder in (E) (±SEM across cells). Net accuracy

is worse for PNs than for ORNs (t test, p = 0.018) or LHNs (t test, p = 0.00077).

Net accuracy is the average of the hit rate and the correct rejection rate.

1016 Neuron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc.
as �80 ms (Bhandawat et al., 2010; Gaudry et al., 2013). There-

fore, we began by counting spikes over an 80 ms window

(Figure 2A).

To quantify detection accuracy, we used the metric

d0 (Supplemental Experimental Procedures). This metric de-

scribes the separation between spontaneous firing rates and

stimulus-evoked firing rates. Because we are interested in

how accuracy grows over time, we performed this analysis in

80 ms windows that progressively slid forward, and we plotted

detection accuracy (d0) versus the ending time of the window

(Figure 2B).

We found that peak accuracy is significantly higher for a

typical PN than for a typical ORN (Figures 2B and 2C). However,

a PN only outperforms an ORN at a relatively long latency from

stimulus onset. This is because these PNs have significantly

higher (and more variable) spontaneous spike rates than their

presynaptic ORNs do (Figure 1H). Higher and more variable

spontaneous rates mean that an observer needs to wait

longer—to count more evoked spikes—before the observer

can reliably detect the stimulus. As a result, a typical PN reaches

a baseline level of accuracy (d0 = 1) at the same time that a typical

ORN does (Figure 2D).

Peak LHN accuracy is similar to peak PN accuracy (Figures 2B

and 2C). However, LHN accuracy rises more quickly, so that a

baseline level of accuracy (d0 = 1) is achieved significantly faster

(Figure 2D). This is because spontaneous spike rates are signif-

icantly lower and less variable in an LHN than in a PN. A decoder

of LHN activity therefore needs to count evoked spikes for a

shorter interval in order to be confident that a stimulus is present.

Of course, the latency of the behavioral response represents

an upper bound on the time to decode the activity of ORNs,

PNs, and LHNs. Events downstream of the olfactory system

must occupy a substantial fraction of the behavioral latency.

We therefore also considered the lower bound of decoding

time—the time towait for a single stimulus-evoked spike. Specif-

ically, wemeasured the percentage of trials that yielded a correct

detection (at least one spike during the stimulus period) or a false

alarm (at least one spike during a period of equal length when no

stimulus was presented).

By this alternate measure, a PN had a higher correct detection

rate, but also a higher rate of false alarms, as compared to anORN

(Figure 2E) and therefore a significantly lower net accuracy (Fig-

ure 2F). However, the average first spike in a PN was significantly

faster than theaverage first spike in anORN (Figure 2G). This latter

result is rather striking, especially because there is a delay of

�4.5 ms between an ORN spike and the start of an excitatory

postsynaptic potential (EPSP) in aPN (KazamaandWilson, 2008).

Compared to a PN, an LHN had a lower rate of false alarms

(Figure 2E) and therefore a significantly higher net accuracy (Fig-

ure 2F). This result reinforces the conclusion that early LHN

spikes are more informative than early PN spikes (Figure 2B).
(G) Mean first spike latency (i.e., the detection latency for the decoder in

E), ±SEM across cells. Latency is shorter in PNs than in ORNs (t test, p =

0.0092). Latency is not significantly different in PNs and LHNs (t test, p = 0.32).

Different methods of measuring first spike latency produced slightly different

values but did not change the qualitative differences between cell types (see

Supplemental Experimental Procedures, Data Analysis).
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Figure 3. A Decoder of ORN Activity Bene-

fits from a Long Integration Time and Low

Spike Count Threshold

(A) Comparing different integration windows by

counting ORN population spikes in sliding win-

dows of variable length (i.e., a variable integration

time). At each time point, we construct spike

count histograms and measure the separation

between spontaneous and evoked activity (stim-

ulus detection accuracy) using d0.
(B) Mean accuracy (d0) over time for simulated

populations of 40 ORNs. Increasing integration

time increased peak accuracy. Populations were

assembled by randomly selecting (without re-

placement) single trials from all of our ORN data

(n = 58 ORN recordings, see Supplemental

Experimental Procedures).

(C) Peak accuracy for various integration times

(mean over 2,000 simulations of each ORN pool

size). ORN pool sizes plotted are: 1, 5, 10, 15, 20,

25, 30, 35, and 40.

(D) As in (C), but for latency to baseline accuracy

(d0 = 1).

(E) Performance of a binary classifier (operating

over 30 ms integration windows) for a range of

spike count thresholds.

(F) Detection latencies for the binary classifier in (E)

for a range of spike count thresholds.
Moreover, the average first spike in an LHNwas almost as fast as

the average first spike in a PN (Figure 2G). Again, this speed is

notable, given the delay of 1.3 ms between a PN spike and the

start of an EPSP in an LHN (see data on paired PN-LHN record-

ings below; see also Fisxek and Wilson, 2014; Kohl et al., 2013).

In summary, single-neuron accuracy (d0) improves at each

step in this circuit, but the nature of the improvement is different

for the two steps. Compared to ORNs, PNs can perform more

accurately when an observer is given a relatively long time to

count spikes, but the PN’s first spike—despite occurring earlier,

on average—carries less information because of the PN’s higher

(and more variable) spontaneous firing rate. Compared to PNs,

LHNs can perform more accurately at short latencies after stim-

ulus onset. The first LHN spike is no faster than the first PN spike,

but it carries more information, because of the LHN’s lower (and

less variable) spontaneous firing rate. Single LHNs can perform

better than single PNs do because single LHNs pool input from

multiple sister PNs (see below).

In the remainder of this study, we investigate the mecha-

nisms that create the progressive improvement in stimulus

detection performance from ORNs to PNs to LHNs. Specif-

ically, we focus on three factors: the statistics of convergent

presynaptic spike trains, the effective integration time of the

postsynaptic cell, and the threshold of the postsynaptic cell.

For simplicity and consistency, we use one stimulus throughout

this study, but we found that other stimuli in the near-threshold

regime (Figures 1C and 1D) produced qualitatively similar re-

sults (but note that the situation is different for stronger stimuli,

see Figure S3).
N

A Decoder of ORN Activity Benefits from a Long
Integration Time and Low Spike Count Threshold
In the above analysis, we have invoked a hypothetical decoder

that receives input from a single ORN, PN, or LHN. Our goal

was to compare how informative these single neurons are about

the presence of a stimulus on a single-trial basis. Here wewill use

a hypothetical decoder for a different purpose. Our goal is to ask

how a postsynaptic neuron might most usefully decode spikes

from a pool of ORNs. Specifically, what happens to detection

accuracy and speed when we vary the integration time and

threshold of the decoder? Then, we will ask how well PN proper-

ties are matched to the properties of this idealized hypothetical

decoder of ORNs.

We first investigated the effects of varying integration time.We

can define the ‘‘integration time’’ of a decoder as the time over

which one input spike summates effectively with subsequent

input spikes. Our hypothetical decoder simply counts spikes

within a specified time window, so the integration time is just

the width of this time interval. As before (Figures 2A–2D), we

used spike counts to compute a time-varying estimate of detec-

tion accuracy (d0). Whereas previously we had measured detec-

tion accuracy based on single ORNs, we here assembled pools

of 40 ORNs by combining ORN recordings drawn from our data-

set, so as to emulate the input to a single PN (Figure 3A). This as-

sembly is justified because ORNs spike independently (that is,

ORNs have no noise correlations; Figure S5; Kazama and Wil-

son, 2009). Exact estimates of the number of DA1 ORNs vary,

but a pool size of�40 is implied by genetic labeling experiments

(see Supplemental Experimental Procedures).
euron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc. 1017
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Figure 4. PNs Have a Long Integration Time and a Low Spike Count

Threshold

(A) Normalized firing rates for ORNs and PNs (reproduced from Figure 1G).

Convolving the ORN response with a rectangular filter having a width of 23 ms

yields a good fit to the PN response.

(B) Mean cumulative ORN spike count (±SEM across cells, n = 58). The vertical

solid line with the arrow denotes mean time to first evoked PN spike (from

Figure 2G). After accounting for the 4.5 ms transmission delay between ORN

spikes and PN EPSP onset, the horizontal dashed line identifies that 0.28

spikes/ORN have occurred prior to the typical first PN spike. This is equivalent

to about 11 spikes per 40 ORNs.

(C) Distance to spike threshold. Left: distance in units of voltage, measured as

the difference between the average threshold of spontaneous PN spikes and

the average PN voltage overall (n = 18 PN recordings). Right: same data ex-

pressed as the percentage of all ORNs that must fire a spike nearly simulta-

neously to drive the PN to threshold (assuming a unitary EPSP amplitude of

2 mV and 40 ORNs, see Supplemental Experimental Procedures).
As one might expect, longer integration times improved peak

accuracy (Figures 3B and 3C) because the decoder averaged

over more ORN spikes. Peak accuracy saturated with an inte-

gration time of about 30 ms. Integration times beyond 30 ms

did not improve accuracy further because the ORN response is

transient.

Increasing integration time also slightly lengthened the latency

to reach a given level of accuracy (Figures 3B and 3D). As inte-
1018 Neuron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc.
gration time increases, the onset of evoked activity was blurred,

and so to reliably detect a stimulus, the decoder needed to wait

for more evoked spikes. However, the increase in latency was

relatively small.

The overall effect of varying integration time was robust to the

size of the ORN pool (Figures 3C and 3D). In short, this analysis

argues that it would be useful for a decoder to integrate ORN

population activity over at least 30 ms because this yields a large

improvement in accuracy, with only a modest impairment of

speed.

The above analysis (d0) does not employ a threshold—it sim-

ply measures the separation between spontaneous and evoked

firing rates. To investigate the effect of a threshold, we imple-

mented a binary classifier: we slid a 30 ms integration window

forward from the time of stimulus onset, and if the number

of spikes in the window exceeded threshold, we counted it

as a correct detection and noted the time. To measure the

rate of false alarms, we repeated the same procedure during

epochs when no stimulus was present. We define the ‘‘spike

count threshold’’ as the number of presynaptic spikes neces-

sary for the decoder to detect the stimulus. With a pool of

40 ORNs, there was a large range of thresholds that elicited

perfect detection accuracy (Figure 3E). Lower thresholds

yielded faster detection (Figure 3F) because they required wait-

ing for fewer spikes. A spike count threshold of about eight

ORN spikes yielded the fastest detection without sacrificing

accuracy.

To summarize, this analysis reveals two useful properties in a

hypothetical (linear) decoder of ORN population activity. First,

peak accuracy is maximized when ORN spikes are integrated

over at least 30 ms. This is a relatively long integration time,

compared to the integration time of LHNs (see below) and

compared to behavioral latencies. Second, given a decoder inte-

grating on a 30-ms timescale, a spike count threshold of�8ORN

spikes maximizes speed while not sacrificing accuracy. This is a

low threshold in the sense that it represents a small percentage

(�20%) of the full population of 40 active ORNs.

PNs Have a Long Integration Time and a Low Spike
Count Threshold
Next, we compared PNs with the idealized decoders described

above, again focusing on integration time and threshold. One

way to estimate PN integration time is to compare the dynamics

of ORN and PN firing rates and fit the transformation with a linear

filter (Figure 4A; Supplemental Experimental Procedures). We

found that the best-fitting filter had a duration of 23 ms (Fig-

ure 4A). Another relevant fact is that the unitary EPSP at ORN-

to-PN synapses has a time constant of roughly 30 ms (Kazama

and Wilson, 2008). Taken together, these facts imply that a PN

integrates ORN spikes over a window of approximately 20–

30 ms. This estimate is in rough agreement with the integration

time of the idealized decoder described above.

How does the spike count threshold of PNs compare to that of

the idealized decoders described above? In other words, how

many closely spaced ORN spikes are needed to drive the PN

to fire a spike? As a first approach to this question, we asked

how many ORN spikes have typically occurred by the time of

the first stimulus-evoked PN spike. The average time of the first



evoked PN spike is 30 ms (Figure 2G). From this measurement,

we subtracted a delay of 4.5ms, representing axonal conduction

and synaptic transmission (Kazama and Wilson, 2008). We then

asked how many ORN spikes had accumulated, on average, by

this time. This value was 0.28 spikes per ORN (Figure 4B), or one

spike in 28% of the ORN pool. Given a pool of 40 active ORNs,

this implies a spike in about 11 ORNs.

The PN’s spike count threshold can also be estimated directly

from current clamp recordings. Here we can think of the spike

count threshold as the number of closely spaced ORN EPSPs

needed to drive the PN to fire a spike. We measured the average

voltage at which a spontaneous PN spike initiates, as well as

the average PN voltage overall (in the absence of any stimulus).

The difference between these values is the distance to spike

threshold, which was about 10 mV on average (Figure 4C). If

an ORN spike depolarizes the PN by about 2 mV (Supplemental

Experimental Procedures), then five synchronous ORN spikes

would be needed to generate a spike in the PN, if summation

were linear. This represents a small fraction (about 13%) of the

total population of 40 active ORNs (Figure 4C).

Broadly speaking, these two methods for estimating the PN

spike count threshold yield similar results. The PN should typi-

cally fire a spike as soon as a small percentage of the ORN

pool responds to the stimulus—a percentage we estimate at

13%–28%. This estimate is in rough agreement with the spike

count threshold of the idealized decoder described above. In

addition, this result is closely related to the finding that the

ORN-to-PN firing rate relationship has a high gain (Figure 1C):

both follow from the fact that the average ORN spike has a rela-

tively potent effect on the PN membrane potential.

Recall that the typical first stimulus-evoked PN spike is fast, in-

sofar as it actually precedes the typical first spike in any given

ORN (Figure 2G). This depends critically on the fact that PNs

have a low spike count threshold. Amodel fit to known properties

of PNs and their input synapses can reproduce this fast first

spike latency in PNs, but only if each ORN spike has a potent ef-

fect on the PN voltage and only if the number of convergent

ORNs is high (Figure S6).

In short, PNs are well suited to harness the power of ORN

convergence for accuracy and speed. Their long integration

time and low spike count threshold are usefully matched to the

statistical properties of ORN spike trains. As a consequence,

PNs effectively average out ORN noise, and they also rapidly

track firing rate increases in the ORN population.

Individual Lateral Horn Neurons Pool Input from
Sister PNs
We next turn to the decoding of PN activity by LHNs. Six excit-

atory uniglomerular PNs are postsynaptic to glomerulus DA1

(Caron et al., 2013; Datta et al., 2008) and project axons to the

lateral horn. The axons of ‘‘sister’’ PNs overlap spatially in the

lateral horn (Kazama and Wilson, 2009; Marin et al., 2002;

Wong et al., 2002), suggesting they may converge on some of

the same LHNs. As a first step toward understanding how

LHNs interpret PN activity, we set out to determine if this is true.

Previous studies have identified and characterized several

clusters of LHNs that receive direct excitation from DA1 PNs

(Kohl et al., 2013; Ruta et al., 2010). Among these LHN clusters,
N

one has especially strong responses to the most potent odor for

DA1 ORNs (cis-vaccenyl acetate; van der Goes van Naters and

Carlson, 2007). This particular LHN cluster has been given

various names (DC1, aSP-f, and aSP5; Cachero et al., 2010;

Kohl et al., 2013; Ruta et al., 2010; Yu et al., 2010).

To determine whether the LHNs in this cluster receive conver-

gent input from sister DA1 PNs, we performed simultaneous

paired PN-LHN recordings (Figure 5A). In each paired recording,

we delivered a brief depolarizing current pulse to trigger a PN

spike, and we looked for a time-locked excitatory postsynaptic

potential (EPSP) in the LHN (Figures 5B and 5C). In a morpholog-

ically and physiologically distinct subtype of LHNs within this

cluster (Figures S1 and S2), we reliably observed EPSPs with a

consistent short latency from the PN spike, indicating a mono-

synaptic connection (5/5 pairs). All the LHNs referred to in this

study belong to this subtype.

Given a direct PN-to-LHN connection in 5/5 paired recordings,

it is almost certain that each LHN receives convergent input from

multiple DA1 PNs. If in reality there was a connection from only

one of the six PNs, the chance of seeing a connection in 5/5 sam-

ples is 0.01%. Thus, we can conclude that each LHN receives

convergent input from at least two DA1 PNs, and possibly all six.

Stimulus Onset Increases Short-Timescale Correlations
among Sister PNs
Because these LHNs pool convergent input from multiple sister

PNs, it is important to characterize the relationship between sis-

ter PN spike trains. With this goal in mind, we made paired re-

cordings from DA1 PNs (Figure 5D). Inspection of paired rasters

showed that sister PN spikes were notably correlated—i.e., sis-

ter PNs were more likely to fire in quick succession than one

would predict by chance, based on themean firing rates of these

neurons (Figure 5E). This correlation arises because each PN re-

ceives divergent input from every individual ORN that targets its

glomerulus (Kazama and Wilson, 2009).

To quantify this effect, we computed shift-subtracted cross-

correlation functions (Supplemental Experimental Procedures).

For DA1 ORNs, this function was flat (Figure S5), indicating

that ORNs are statistically independent. For DA1 PNs, the result

was a positive correlation (Figure 5F). PN correlations depended

on timescale, with significantly larger correlations at long time-

scales (Figure 5G).

Notably, in the first 35 ms after stimulus onset, PN correlations

were considerably higher than they were in the absence of a

stimulus (Figure 5F). The stimulus-induced increase in correla-

tions was mainly restricted to short timescales (Figure 5G).

This phenomenon can be explained by how correlated synaptic

inputs interact with spike threshold (de la Rocha et al., 2007) and

is consistent with a previous report of correlations among sister

PNs in a different glomerulus (Kazama and Wilson, 2009).

A Decoder of PN Population Activity Faces a Speed-
Accuracy Tradeoff
The above analyses show that the statistics of PN activity

depend on timescale. Thus, for a decoder of PN activity, accu-

racy and speed should both depend on integration time. To

explore the effect of systematically varying integration time, we

again turned to a hypothetical decoder. First, we computed
euron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc. 1019
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Figure 5. Individual Lateral Horn Neurons Pool Input from Sister

PNs, and Stimulus Onset Increases Short-Timescale Correlations
among Sisters

(A) Schematic of a paired PN-LHN recording.

(B) Examples of unitary EPSPs recorded from a single LHN in response to a

single PN spike evoked by current injection (PN spike time indicated by vertical

dashed line). Traces are ordered chronologically, top to bottom.

(C) Mean EPSPs (black) for each paired recording. Overlaid is the grand

average unitary EPSP over all 5 pairs (green). Before averaging, EPSPs are

aligned to the time of the PN spike (specifically, the onset of the PN spike

waveform; see Supplemental Experimental Procedures). On average, the

latency between the PN spike and EPSP onset is 1.3 ± 0.2 ms (mean ± SEM

across recordings; measured as the time that the trial-averaged EPSP in an

LHN takes to reach 5% of its peak).

(D) Schematic of a paired PN-PN recording.

(E) Rasters from two simultaneously recorded DA1 PNs.

(F) Cross-correlation functions (shift-subtracted) for spontaneous and stim-

ulus-evoked activity (mean ± SEM over pairs, computed using 2 ms bins, n = 8

DA1 PN pairs). Stimulus-evoked activity is shown for two time periods, one

encompassing the full response (120 ms) and one that includes only the first

35 ms of the response.

(G) Correlation coefficient (shift-subtracted) for PN pairs over various inte-

gration windows (mean ± SEM over pairs). There is a significant effect of

integration window size on the correlation coefficient (ANOVA, p = 0.0061). For

short integration windows, correlation coefficients are higher during evoked

activity than during spontaneous activity (*p < 0.02, paired t test).
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detection accuracy based on spike counts from single PNs. We

varied the duration of the integration window over which we

counted spikes (Figures 6A and 6B). As one might expect, there

was a tradeoff between peak accuracy and speed (Figures 6C

and 6D). A longer integration time produced higher peak accu-

racy, but only at long latencies. The reason is that accurate

detection cannot occur until the number of counted spikes per

window exceeds the number of expectable spontaneous spikes

per window. Thus, longer windows delay the time point when

peak accuracy can be reached.

We next considered data from PN pairs. PN pairs consistently

outperformed single PNs, in terms of both peak accuracy and

speed (Figures 6C and 6D). To begin to link these observations

to LHN responses, we focused on the time point 35 ms after

stimulus onset, about the time of the first LHN spike (Figure 2G).

Given this response latency, the ideal integration time was

10–20ms for a decoder of one or two PNs (Figure 6E). To extrap-

olate to a pool of six PNs, we constructed amodel that preserved

pairwise correlations among PNs (Figure 5G; Supplemental

Experimental Procedures). Adding more and more PNs had the

greatest benefit for short integration times and shifted the ideal

integration time to shorter intervals (Figure 6F). This is because

correlations between PNs were greatest at short timescales

(Figures 5G and S7).

To recap, a hypothetical decoder of PNs faces a speed-accu-

racy tradeoff in its choice of integration times. Long integration

times maximize peak accuracy, while short integration times

maximize speed. However, the accuracy reduction of a short

integration time is mitigated by adding sister PNs to the pool,

and indeed the relative benefit of pooling across multiple PNs

is greatest for short integration times. The speed-accuracy

tradeoff faced by a decoder of PNs is similar to that faced by

a decoder of ORNs (Figures 3C and 3D), but it is more

pronounced.

Next, to investigate the effect of varying the spike count

threshold, we returned to our binary classifier. As before (in Fig-

ures 3E and 3F), we slid an integration window forward from the

time of stimulus onset, and if the number of stimulus-evoked

spikes within the window exceeded the threshold, we counted

a correct detection. False alarms were measured on stretches

of data when no stimulus was presented. We used a narrow inte-

gration window (10 ms) because this window is best for a

decoder that is forced to respond by the time of the first LHN

spike (Figures 6E and 6F).

In this narrow time window, a single PN rarely fires more than

twice, so we focused on thresholds of one or two PN spikes. For

a decoder pooling from two sister PNs, raising the threshold from

one spike to two spikes reduced false positives (Figure 6G) but

also delayed detection (Figure 6H). However, correlations should

make it possible to cross a high threshold sooner because they

increase the likelihood that multiple PNs will spike in the same

brief time window. This result is clearest in a model pool of six

PNs (Supplemental Experimental Procedures): here, the speed

cost of a high threshold was lower when correlations were pre-

sent (Figure 6I).

In summary, a hypothetical decoder of PNs faces a speed-ac-

curacy tradeoff in its choice of spike count threshold. Raising the

threshold improves accuracy but delays the time of threshold
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Figure 6. A Decoder of PN Population Activity Faces a Speed-Accu-

racy Tradeoff

(A) Comparing different integration windows by counting spikes from pairs of

PNs (or single PNs) in sliding windows of variable length (i.e., a variable inte-

gration time). At each time point, we construct spike count histograms and

measure the separation between spontaneous and evoked activity (stimulus

detection accuracy) using d0.
(B) Accuracy (d0) over time based on spike trains from a single PN (mean ± SEM

over PNs).

(C) Peak detection accuracy versus integration time, averaged over all PN

pairs or the single PNs included in these pairs. Accuracy (single PNs) increases

with integration time (ANOVA, p = 7.23 10�4). Accuracy is higher for PN pairs

than for single PNs (ANOVA, p = 0.0142). This and all subsequent panels in this

figure are computed on the same dataset (n = 8 PN pairs).

(D) Mean latency to baseline accuracy (d0 = 1) versus integration time. Latency

increases with integration time (single PNs, ANOVA, p = 5.63 10�4). Latencies

are shorter for PN pairs than for single PNs (ANOVA, p = 0.0090). Latency is not

calculated for windows of 4 ms or shorter because several (single) PNs never

reach baseline accuracy.

(E) Mean accuracy versus integration time, evaluated at 35 ms after stimulus

onset. Accuracy is maximal for decoders that integrate over 10–20 ms. Ac-

curacy is higher for PN pairs than for single PNs (ANOVA, p = 6.03 10�4). The

improvement in accuracy with pairs is significantly greater for short timescales

than for long timescales (ANOVA, interaction between population size and

integration time: p = 0.0045).

N

crossing. However, the speed cost of a high threshold is miti-

gated by the fact that sister PN spikes are correlated.

LHNs Operate with a High, but Dynamic, Spike Count
Threshold
Given this tradeoff between speed and accuracy, how can LHNs

be so fast but also accurate? LHNs suppress spontaneous

spikes (Figure 1H) and thereby improve accuracy at short la-

tencies (Figures 2B and 2F). Nonetheless, the first spike latency

of an LHN is not significantly longer than that of a PN (Figure 2G).

How is this achieved?

Theaverageamountof depolarization needed to trigger a spon-

taneous LHNspike is about 10mV (Figure 7A). If a PN spike depo-

larizes the LHN by about 1 mV (Figure 5C), then 10 synchronous

PN spikes would be needed to generate a spike in the LHN,

assuming linear summation. Recall that only five synchronous

ORNspikesareneeded todrive aPNspike, according to our anal-

ogous PN analysis (see above). The difference between PN and

LHN spike count threshold is even larger if we normalize these

numbers by the size of the presynapticpool.WhereasPNs require

only a small percentage of their feedforward inputs to spike, we

estimate that LHNs require all of their feedforward inputs to spike

(Figure 7B). Thus, in relative terms, the LHN spike count threshold

is high, at least during epochs of spontaneous activity. This helps

explain why the spontaneous firing rate is so low in LHNs.

Given the high spike count threshold in LHNs, how can the first

LHN spike be so fast (Figure 2G)? Inspection of the LHN voltage

trace revealed that the spike threshold was not static—it varied

from moment to moment (Figures 7C–7E). In particular, whereas

spontaneous spikes initiated at relatively high thresholds (Fig-

ure 7A), stimulus-evoked spikes typically initiated at lower

thresholds (Figures 7C–7E).

At stimulus onset, the peak rate of membrane depolarization

was often much larger than during epochs of spontaneous

activity. It is well known that fast membrane depolarization can

lower the spike threshold in some types of neurons; this phe-

nomenon has been termed a ‘‘dynamic threshold’’ (Azouz and

Gray, 2000; Wickens and Wilson, 1998). Indeed, we found that

faster depolarizations consistently produced lower thresholds

in LHNs (Figures 7F and 7G). By contrast, in PNs, threshold

was significantly less dependent on the rate of depolarization

(Figures 7F–7H). Stimulus onset lowered the threshold for LHN

spikes by about 20%, on average (Figure 7I).
(F) Same as (E) but for modeled PN populations ranging in size from 1 PN to 6

PNs. Spike counts in PN populations were simulated based on distributions

from paired PN data (Supplemental Experimental Procedures).

(G) Hit rates and false alarm rates for a binary classifier (with a 10-ms inte-

gration window, mean ± SEM), for two different thresholds (one spike or two

spikes, pooled over a pair of sister PNs). The higher threshold produces a

higher net accuracy (paired t test, p = 0.0189).

(H) Detection latencies for the binary classifier in (G), for the same two

thresholds. The higher threshold imposes a speed cost of about 5 ms (paired

t test, p = 0.0073).

(I) In a modeled population of 6 PNs, mean latency for a given number of these

PNs to fire a first spike after stimulus onset (±SEM across populations). First

PN spike distributions were simulated based on distributions from paired PN

data (Supplemental Experimental Procedures). When trials were shifted to

remove correlations, latencies became longer for higher thresholds.
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Figure 7. LHNs Operate with a High, but Dy-

namic, Spike Count Threshold

(A) Distance to spike threshold for PNs and LHNs.

Each symbol is a different recording. This and

subsequent group-data panels in this figure are

computed on the same dataset (n = 18 PNs and 16

LHNs).

(B) Same but normalized by the estimated typical

EPSP amplitude for each cell type (2 mV for PNs,

1.08 mV for LHNs; see Figure 5C and Supple-

mental Experimental Procedures) and also

normalized by the size of the presynaptic pool

(here assumed to be 40 ORNs and 6 PNs). This

value represents the percentage of the total pre-

synaptic pool that must spike nearly synchro-

nously to drive the postsynaptic cell above

threshold.

(C) A typical whole-cell current clamp recording

from an LHN highlighting two spikes (black and

blue) and also a depolarization that does not evoke

a spike (green). Circles and dashed lines denote

spike thresholds.

(D) Brief snippets of voltage surrounding the two

spikes and the non-spiking depolarization (fromC).

(E) Phase portrait (dV/dt versus V) for these three

snippets.

(F) Distance to spike threshold versus rate of de-

polarization for all spikes (spontaneous and stim-

ulus evoked) recorded from a typical PN and LHN.

Colored lines are linear regression fits.

(G) Linear regression fits (like those in F) for all PNs and LHNs. Each line represents a different recording.

(H) Slopes of linear regression fits from (G) for all PNs and LHNs. Distance to threshold depends on dV/dtmore strongly in LHNs than in PNs (t test, p = 1.93 10�7).

(I) Distance to threshold versus dV/dt in LHNs. Error bars denote ±SEM. Spikes in two categories were analyzed—namely, spontaneous spikes and the first

stimulus-evoked spike. Distance to threshold is significantly lower for the first stimulus-evoked spike (paired t test, p = 6.23 10�4).dV/dt is also significantly higher

for the first stimulus-evoked spike (paired t test, p = 0.0024).
The dynamic threshold helps explain how LHNs canmaintain a

fast response while still suppressing spontaneous activity. When

PN spikes arrive at a relatively slow rate (i.e., in the absence of a

stimulus), we estimate that an LHNmust wait to receive about 10

closely spaced PN spikes before it can fire (Figures 7B and 7I).

Thus, spontaneous activity is suppressed in LHNs. But when

PN spikes arrive in quick succession (i.e., at stimulus onset,

when spike rates and noise correlations are highest), we esti-

mate that LHNs need only receive about eight PN spikes before

they can fire (Figure 7I). In essence, the dynamic threshold in

LHNs should allow them to mitigate the speed-accuracy trade-

off: LHNs can set a high spike count threshold to improve accu-

racy while lowering the threshold at stimulus onset to maintain

speed.

Beyond the dynamic threshold mechanism, there may be

other mechanisms at work that bring the LHN to threshold

rapidly. The average first spike latency in an LHN is actually

faster than our estimate of the latency to accumulate first

spikes in six sister PNs (compare Figures 2G and 6I). It is

possible that there are higher-order correlations among sister

PNs that we cannot discern. These correlations could make

the first spikes elicited by all six sister PNs even more synchro-

nized; in this scenario, the sixth PN spike would occur with

shorter latency than we predict in Figure 6I. An additional

possibility is that EPSPs might sum supra-linearly in LHN

dendrites.
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The Dynamic Threshold Shortens the LHN Integration
Window
For an idealized decoder of PN spike trains, detecting the stim-

ulus rapidly requires a short integration time (Figure 6). If the post-

synaptic firing rate is simply proportional to themembranepoten-

tial, and if EPSPs summate linearly, then the integration time is

specified by the duration of a unitary EPSP. By this logic, the inte-

gration time in an LHN seems long, given that the average EPSP

has a time constant of�40ms (Figure 5C). However, the dynamic

threshold in an LHN will shorten its effective integration time

(Azouz and Gray, 2000). To see why this is true, consider the ef-

fect of summing six EPSPs in an LHN, with variable arrival inter-

vals between EPSPs (Figure 8A). As these intervals decrease

the peak of the compound EPSP grows gradually. However,

the rising slope of the compound EPSP growsmore steeply (Fig-

ure 8B). Thus, insofar as spiking depends on dV/dt, the cell’s

effective integration time is narrower. This mechanism can

contribute to ‘‘coincidencedetector’’ or ‘‘differentiator’’ behavior,

whereby aneuron respondspreferentially to short presynaptic in-

ter-spike intervals (Lundstrom et al., 2009; Slee et al., 2005).

It is instructive to compare the dynamics of dV/dt in an LHN

(Figures 8A and 8B) with the timescale of spike coincidences in

sister PNs. Stimulus onset dramatically increases the relative

prevalence of short inter-spike intervals in sister PNs (Figure 8C).

This is partly because the stimulus simply increases firing rates

and partly because correlations increase at stimulus onset
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Figure 8. The Dynamic Threshold Shortens the LHN Integration

Window

(A) Simulated compound EPSPs in an LHN in response to 6 PN spikes with

variable inter-spike intervals. A single unitary EPSP is shown in black for

comparison. EPSP summation is assumed to be linear.

(B) Comparison of the peak depolarization (green) and the peak rate of de-

polarization (blue) for the simulated compound EPSPs shown in (A). The peak

rate of depolarization falls off faster than the peak depolarization.

(C) In a pair of PNs, probability distributions of inter-spike intervals for the first

two stimulus-evoked PN spikes, or the first two spontaneous PN spikes

(measured from an arbitrarily chosen time point during spontaneous activity).

The x axis is truncated at 20 ms. Shaded regions denote ±SEM across

pairs, n = 8.

(D) Same but for trial-shifted distributions,meaning correlations between sister

PN pairs have been eliminated.
(Figures 5F and 5G). This latter effect is clearly relevant because

if we eliminate correlations by shifting trials, we eliminate most of

the shortest inter-spike intervals (Figure 8D). An ideal decoder

would respond preferentially to short inter-spike intervals,

because they are highly predictive of a stimulus, with proportion-

ately less weight assigned to longer inter-spike intervals, which
N

are less predictive. A dynamic threshold narrows the neuron’s

integration window, and so it should move the LHN in the direc-

tion of this ideal decoder.

DISCUSSION

Here, we show that PNs and LHNs receive spike trains with

different statistical properties. Our results argue that the proper-

ties of neurons within each layer—specifically, their integration

time and threshold—are well suited to the statistics of the

input they receive. These findings suggest a framework for

thinking about other circuits where signals converge, diverge,

and re-converge.

Different Integration Times for Different Input Spike
Train Statistics
The speed and accuracy of spike train decoding depends criti-

cally on the timescale over which spikes are integrated. We

can define the ‘‘integration time’’ of a decoder as the time over

which one presynaptic spike can summate effectively with sub-

sequent spikes. In general, increasing the integration time of a

decoder should improve detection accuracy because more

spikes can be averaged together. Indeed, we show that it is use-

ful for a decoder to integrate ORN spikes over at least �30 ms

because accuracy is best at long timescales and there is little

cost in terms of speed. Accordingly, we found that PNs do

indeed integrate ORN spikes over �30 ms. This represents a

relatively long integration time, compared to the integration

time of LHNs. A similarly long integration time has been

measured in pheromone-sensitive PNs in moths, based on a

paired-pulse experimental design (Tabuchi et al., 2013).

There is a long history to the idea that the brain must average

the spike trains of convergent ORNs (Cleland and Linster, 2005;

van Drongelen et al., 1978). This idea is supported by the finding

that vertebrate olfactory bulb neurons generally have better reli-

ability and lower odor detection thresholds, as compared to

ORNs (Duchamp-Viret et al., 1989; Meeks et al., 2010; Rospars

et al., 2013; Tan et al., 2010). The same is true of central and pe-

ripheral neurons in the moth pheromone-processing system

(Boeckh and Boeckh, 1979; Rospars et al., 2014). Here we

show explicitly that a long integration time is useful for a hypo-

thetical decoder of ORN activity, and we demonstrate that PNs

behave as integrators that summate ORN spikes over a relatively

long time window.

In contrast, a decoder of PN spikes incurs a relatively high cost

if it employs a long integration time, because PNs have high

spontaneous rates and correlated spike times. Integration times

beyond �10 ms diminish the decoder’s stimulus detection

speed (due to high spontaneous activity in PNs) and impair the

ability of the decoder to average out noise (due to increasing

PN-PN correlations at long timescales). Accordingly, LHNs are

endowed with a mechanism that shortens their effective integra-

tion time—the dynamic spike threshold.

Different Thresholds for Different Input Spike Train
Statistics
A binary classifier is defined by a threshold as well as an integra-

tion window, and its performance depends critically on the
euron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc. 1023



choice of threshold. We have formulated this problem in terms of

the ‘‘spike count threshold’’ of a postsynaptic neuron, which we

define as the number of closely spaced presynaptic spikes

needed to drive a postsynaptic spike. In general, a binary classi-

fier faces a speed-accuracy tradeoff in its choice of threshold:

lower thresholds yield faster first spike latencies, but also poorer

accuracy, due to high false alarm rates.

Our results draw attention to two factors that can affect this

tradeoff: spontaneous activity and correlations between neu-

rons. First, if spontaneous activity and correlations are both

low, then the accuracy cost of a low threshold is diminished.

Second, if presynaptic spike trains are correlated, speed can

be achieved with a high threshold (Middleton et al., 2009). These

two factors are most relevant to a decoder of ORNs and a

decoder of PNs, respectively.

ORNs are uncorrelated; the DA1 ORNs also have low sponta-

neous firing rates. Thus, a hypothetical decoder that integrates

over time (and over many ORNs) can achieve a relatively low

and constant level of baseline activity. This enables the de-

coder’s threshold to be set at a low value without sacrificing ac-

curacy. Accordingly, we found that the spike count threshold in a

PN is relatively low. This enables PNs to respond rapidly, re-

sponding preferentially to those ORNs that happened to spike

earliest. A similar inference has been reached for pheromone-

sensitive ORNs and PNs in the moth (Rospars et al., 2014). (As

an aside, we note that PN noise is considerably higher than we

would predict for a hypothetical decoder that simply pools

ORN spike trains; this additional noise is likely due to noisy input

from local interneurons; see Figure S8.)

As compared to their presynaptic ORNs, the DA1 PNs

have relatively high spontaneous firing rates, and their sponta-

neous spikes are correlated. As a consequence, an accurate

decoder of PN spikes must have a high threshold. Accord-

ingly, we found that LHNs do indeed have a high spike count

threshold. In principle, a high threshold will delay detection.

However, in this case, the speed-accuracy tradeoff is miti-

gated by the correlations among sister PNs. These correla-

tions allow a decoder to set a high threshold without sacri-

ficing too much speed. PN correlations also increase at

stimulus onset, which further improves both accuracy and

speed. Indeed, we find that LHNs respond to a stimulus

remarkably rapidly.

LHNs also have a dynamic threshold, meaning that they are

not linear decoders. Because the spike threshold in LHNs de-

pends on the rate of change of its membrane potential, not all

incoming spikes are treated equally. This allows LHNs tomitigate

the speed-accuracy tradeoff that faces a linear decoder. In the

absence of a stimulus, the spike count threshold is high, which

suppresses spontaneous activity. At stimulus onset, the

threshold drops, which should yield both a speed benefit and

an accuracy benefit.

A high and dynamic threshold makes this type of LHN a ‘‘coin-

cidence detector.’’ Similar coincidence detector properties are

found in layer IV visual cortical neurons. Interestingly, like

LHNs, these neurons receive correlated convergent feedforward

signals—in this case, from thalamic neurons, whose correlations

derive from divergent retinal projections (Alonso et al., 1996). In

both LHNs and layer IV cortical neurons, therefore, presynaptic
1024 Neuron 88, 1014–1026, December 2, 2015 ª2015 Elsevier Inc.
spike train statistics and postsynaptic properties are seemingly

well matched.

Integrators and Differentiators
It is useful to think of PNs as integrators and LHNs as differentia-

tors. PNs average presynaptic spikes over a relatively long time

window, and their spike threshold is fairly static. By contrast, the

LHN spike threshold depends more steeply on dV/dt, and as a

consequence, effective integration time is shortened in LHNs.

In general, an integrator is a neuron whose firing rate depends

mainly on themean input current. Conversely, a differentiator is a

neuron whose firing rate depends mainly on the variance of the

input current. There is a continuous spectrum of behaviors

from differentiation to integration (Ratté et al., 2013, 2014). Our

results extend this literature by showing how the intrinsic proper-

ties of a neuron—whether integrator or differentiator—may be

usefully matched to population spiking statistics of its inputs.

The mechanisms that distinguish integrators from differentia-

tors can be recapitulated in Hodgkin-Huxley models of spiking

neurons (Azouz and Gray, 2000; Lundstrom et al., 2008). In

particular, lowering the level of the voltage-gated Na+ conduc-

tance promotes differentiation. If the Na+ conductance is low

enough, the level of Na+ channel inactivation can become a

limiting factor in spike initiation. In this regime, the spike

threshold becomes sensitive to the speed of subthreshold depo-

larization, because channel activation is faster than inactivation.

Fast depolarization allows activation to win out over inactivation,

and spike threshold falls. Conversely, slow depolarization allows

inactivation to keep pace with activation, and spike threshold

rises.

Spike Timing Correlation and Synchrony
Neurons that are tuned to the same sensory features often

exhibit ‘‘noise correlations’’—i.e., correlated spontaneous activ-

ity and correlated trial-to-trial fluctuations in stimulus-evoked ac-

tivity. From the perspective of an idealized decoder, correlations

can be either harmful or helpful. When two neurons are function-

ally identical, positive correlations will generally be harmful (Aver-

beck et al., 2006). Many studies have measured correlations in

population codes and developed a theory of their origin and

function (Averbeck et al., 2006; Cohen and Kohn, 2011). How-

ever, comparatively few studies have investigated how corre-

lated activity influences downstream circuitry, mainly because

of the difficulty in identifying downstream targets of correlated

populations. Here, we have the rare opportunity to directly inves-

tigate both a pool of correlated neurons (sister PNs) and some of

the postsynaptic recipients of their convergent axons (LHNs).

We found that correlations between PNs exhibited two prop-

erties that ameliorate their adverse effects. First, correlations

are smaller for shorter timescales of analysis. This widely

observed phenomenon (Bair et al., 2001; Cohen and Kohn,

2011; Giridhar et al., 2011) indicates that millisecond-timescale

spike precision is largely independent fromPN to PN. The conse-

quence of this finding is that short-timescale decoders will

benefit more from pooling PNs than long-timescale decoders

do (Figures 6F and S7).

Second, correlations increase at the onset of a stimulus,

although only at short timescales. This phenomenon likely arises



from a feedforward mechanism—namely, the interaction be-

tween correlated excitatory synaptic currents and the spike

threshold in the postsynaptic neuron (de la Rocha et al., 2007).

These short timescale correlations carry information about the

presence of a stimulus but require a decoder tuned to short inte-

gration windows.

LHNs, the true biological decoders of PN activity, are indeed

tuned to short integration windows by virtue of their dynamic

threshold. This means that PN correlations, as viewed by an

LHN, are relatively small and stimulus dependent. LHNs thus

minimize the deleterious (stimulus-independent) and maximize

the advantageous (stimulus-dependent) effects of correlated

inputs.

Convergence, divergence, and reconvergence may represent

a general mechanism for distilling information from a large pop-

ulation of neurons into an individual cell, while remaining rela-

tively immune to accumulated noise and preserving speed. At

successive layers of a feedforward network, convergence can

allow a single cell to explicitly represent information that was

only implicit in earlier layers. Under the correct conditions, a

signal injected into the front end of the network will propagate

securely, while spurious noise injected into any individual neuron

will tend to die out. Finally, as the signal propagates, temporal

compression of the spike packet can counteract the delays

necessarily involved with transmission between layers. In this

manner, some fundamental constraints on neural computations

(noise, delays) can be counteracted.

EXPERIMENTAL PROCEDURES

Fly Stocks

In virtually all experiments, the genotype used was Mz19-Gal4,UAS-CD8:

GFP;JK1029-VP16-AD,ChaDBD/UAS-ChR2. A handful of recordings were

conducted in different, but related, genotypes (see Supplemental Experi-

mental Procedures). All experiments were performed in males. Mz19-

Gal4 drives expression in DA1 PNs (Tanaka et al., 2004). JK1029-VP16-

AD,ChaDBD drives strong expression in several clusters of LHNs receiving

DA1 PN input (Kohl et al., 2013), as well as strong expression in DA1 ORNs.

See Supplemental Experimental Procedures for details.

Electrophysiology

In vivo extracellular ORN recordings were performed using saline-filled sharp

quartz electrodes. In vivo PN and LHN patch-clamp recordings were per-

formed fromGFP-labeled somata under visual control as described previously

(Fisxek and Wilson, 2014). See Supplemental Experimental Procedures for

details.

Optogenetic Stimulation

ORNswere stimulated with blue light (470 nm) produced by an LED coupled to

an optical fiber. The end of the fiber was precisely aligned to the antenna ipsi-

lateral to the recorded neuron. The contralateral antenna was not stimulated.

See Supplemental Experimental Procedures for details.

Spike Detection

Spikes were detected using custom-written MATLAB routines. See Supple-

mental Experimental Procedures for details.

Data Inclusion

Five whole-cell PN recordings were omitted because their activity fell far

outside the distribution expected on the basis of cell-attached PN recordings,

which constitute a useful benchmark because they are non-invasive. See Sup-

plemental Experimental Procedures for details.
N

Data Analysis, Simulating Populations of >2 PNs, PN Integrate-and-

Fire Model, and Statistics

See Supplemental Experimental Procedures for details.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and eight figures and can be found with this article online at http://dx.doi.

org/10.1016/j.neuron.2015.10.018.
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