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SUMMARY

Odorant receptors in the periphery map precisely
onto olfactory glomeruli (‘‘coding channels’’) in the
brain. However, the odor tuning of a glomerulus is
not strongly correlated with its spatial position. This
raises the question of whether lateral inhibition be-
tween glomeruli is specific or nonspecific. Here we
show that, in the Drosophila brain, focal activation of
even a single glomerulus recruits GABAergic inter-
neurons in all glomeruli. Moreover, the relative level
of interneuron activity in different glomeruli is largely
odor invariant. Although interneurons are recruited
nonspecifically, glomeruli differ dramatically in their
sensitivity to interneuronactivity, and this is explained
by their varying sensitivity to GABA. Interestingly, a
stimulus is typically encoded in parallel by channels
having high and low sensitivity to inhibition. Because
lateral inhibition confers both costs and benefits, the
brain might rely preferentially on ‘‘high’’ and ‘‘low’’
channels in different behavioral contexts.
INTRODUCTION

In some brain regions, a neuron’s preferred stimulus and its

physical location are systematically related. In these ‘‘topo-

graphic’’ regions, neurons that are physically near each other

often have similar tuning. Because most inhibitory interneurons

act locally, inhibition in these brain regions occurs mainly be-

tween neurons whose activity is correlated (Kaas, 1997). Lateral

inhibition in topographic networks allows neurons to encode

finer details by removing the coarse (i.e., shared) components

of their signals (Srinivasan et al., 1982). It also reduces

redundancy, thereby conserving metabolic resources (Barlow,

1961). However, many brain regions are non-topographic (or

only weakly topographic), where neighboring neurons can have

very different stimulus preferences (Bandyopadhyay et al.,

2010; Ohki et al., 2005; Redish et al., 2001; Rothschild et al.,

2010; Soucy et al., 2009; Stettler and Axel, 2009). In general,

it is not clear to what extent lateral inhibitory connections are

selective in non-topographic networks.

An example of a non-topographic circuit is the brain’s first

odor processing relay, the antennal lobe in insects and the olfac-

tory bulb in vertebrates (Vosshall and Stocker, 2007; Shepherd
and Greer, 1998). Each coding channel (or glomerulus) in this

circuit receives convergent projections from many olfactory re-

ceptor neurons (ORNs), all of which express the same odorant

receptor. Within each glomerulus, ORNs synapse onto sec-

ond-order neurons, each of which receives direct ORN input

from just one glomerulus. Thus, each glomerulus defines a

discrete processing channel. Although each glomerulus has a

stereotyped location, the arrangement of glomeruli displays little

or no topography—i.e., odor-evoked input to glomeruli that are

physically near one another is no more correlated than the input

to any random pair of glomeruli (Couto et al., 2005; Hallem and

Carlson, 2006; Soucy et al., 2009).

Odors typically activate multiple ORN types, and the output of

a glomerulus depends on its interactions with other coactivated

glomeruli. In particular, glomeruli inhibit each other via inhibitory

local interneurons (‘‘lateral inhibition’’). One fact relevant to

lateral inhibition is that odor-evoked activity tends to be corre-

lated across ORNs, meaning that an odor that strongly activates

one ORN type typically elicits strong activity in many other

ORN types (Haddad et al., 2010; Olsen et al., 2010; Luo et al.,

2010). One proposed function of lateral inhibition is to reduce

these correlations at the level of second-order neurons (Cleland,

2014; Wilson, 2013).

An important outstanding question in olfaction is the degree of

selectivity in lateral inhibition. In the olfactory bulb, the evidence

for selective connectivity is mixed (Fantana et al., 2008; Luo and

Katz, 2001; Willhite et al., 2006). Physiological studies in the

olfactory bulb have inferred lateral inhibitory connectivity indi-

rectly, based on the premise that anti-correlated activity in two

glomeruli reflects an inhibitory connection between them. This

question can be addressed more directly in the Drosophila

antennal lobe. The Drosophila antennal lobe is compact and

genetically accessible, and the activity of inhibitory local neurons

(LNs) can be optically monitored within each glomerulus (Ng

et al., 2002; Silbering et al., 2008). Lateral inhibition in this circuit

is known to play a key role in gain control (Olsen and Wilson,

2008; Root et al., 2008) and may have other functions as well.

Here we address two outstanding questions regarding inter-

glomerular inhibition. First, how specific are inhibitory interac-

tions between glomeruli? Previous studies have suggested that

inhibition is sparse and specific (Girardin et al., 2013; Ng et al.,

2002), or pan-glomerular (Asahina et al., 2009; Olsen et al.,

2010), or both (Sachse and Galizia, 2002; Silbering and Galizia,

2007; Silbering et al., 2008). Some individual LNs innervate all

glomeruli, whereas others innervate just a subset of glomeruli,

so any of these scenarios is possible (Chou et al., 2010; Seki

et al., 2010; Okada et al., 2009).
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Figure 1. Activating a Single Glomerulus with Odor Recruits LN Activity to all Glomeruli

(A) Two-photon imaging of odor-evoked calcium signals in ORN axon terminals. GCaMP3 is expressed in ORNs under the control of pebbled-Gal4. The antennal

lobe is viewed from the dorsal side and outlined in red (anterior is down, medial is right). Scale bar, 20 mm. Odors were largely ‘‘private,’’ defined as activating only

one ORN type. Odor set 1 is: 2-butanone, 53 10�6 (private for glomerulus VM7); geranyl acetate, 10�5 (VA6); methyl salicylate, 53 10�5 (DL1); E2-hexenal, 10�6

(DL5). Active glomeruli resided in two imaging planes, at �12 mm (DL1 and DL5) and �24 mm (VM7 and VA6).

(legend continued on next page)
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Second, are all glomeruli equally sensitive to the effects of LN

activation? Glomeruli are differentially innervated by individual

inhibitory LNs (Chou et al., 2010). Glomeruli also express variable

levels of GABA receptor and show variable responses to a syn-

thetic GABAB agonist (Root et al., 2008). In principle, either

mechanism could produce variations in sensitivity to LN activa-

tion, but this has not been investigated.

In this study, we find that the recruitment of inhibition is

relatively nonspecific, and indeed, activating a single glomer-

ulus recruits LN activity in all glomeruli. Nonetheless, glomeruli

vary dramatically in their sensitivity to LN activation, i.e.,

their ‘‘inhibitability.’’ We propose that this organization allows

some channels to realize the benefits of lateral inhibition, while

allowing other channels to remain relatively immune from the

costs of lateral inhibition—namely, noise and ambiguity. These

results have broad relevance for how population diversity

within a circuit can resolve competing constraints on neural

processing.

RESULTS

Input to a Single Glomerulus Recruits LN Activity in All
Glomeruli
We began by asking whether inhibitory interactions between

glomeruli are specific. We selected odor stimuli that excite only

one ORN type, and we asked how the spatial pattern of activity

in GABAergic LNs depends on the identity of the glomerulus that

is receiving direct ORN input. If inhibition is sparse and glomer-

ulus specific, the glomerular pattern of LN activity should be

different for odors that activate different ORN types, and focal

stimulation should in principle be the clearest way to reveal this.

We identified eight odor stimuli that should drive activity pri-

marily in a single ORN type, which we call ‘‘private’’ odor stimuli

(Hallem and Carlson, 2006; Olsen et al., 2010; Schlief and Wil-

son, 2007). To visualize the pattern of ORN input evoked by

each stimulus, we expressed the genetically encoded calcium

indicator GCaMP3 (Tian et al., 2009) in ORNs under the control

of the Gal4-UAS system. We then used in vivo two-photon

microscopy to image odor-evoked signals in ORN axons termi-

nating in the antennal lobe. As expected, each private odor

stimulus elicited a fluorescence increase at the position corre-

sponding to its cognate glomerulus (Figures 1A and 1B). In

some experiments, one or two additional glomeruli were also

weakly activated, but this was unusual.

To visualize LN activity elicited by focal ORN input, we ex-

pressed GCaMP3 in a large subset of GABAergic LNs using

the NP3056-Gal4 driver (Chou et al., 2010) and imaged calcium
(B) Same as (A) but for a different set of experiments using odor set 2: geosmin, 1

(DM4). Active glomeruli resided in four different imaging planes (�12 mm, �24 mm

(C and D) Same as (A) and (B), but for GABAergic LNs. GCaMP3 is expressed un

(Figure S1). Activating individual glomeruli elicits a global pattern of LN activity. Im

excited by these sets of odors, but similar results are seen in all planes. Note that

glomerulus (white arrowheads).

(E) The spatial pattern of LN activity is similar across individuals. Images were a

in glomeruli that could be identified with confidence. The value for each glom

experiments, mean ± SEM). Across individuals, a given glomerulus exhibits a cha

averaged activity for three individual flies (GCaMP expressed under the contro

boundaries in this plane.
signals in LN neurites. The NP3056-Gal4 driver labels between

50 and 60 LNs in the antennal lobe, and most individual LNs in

this population innervate most or all glomeruli (Chou et al.,

2010), which is typical of GABAergic LNs in general (Chou

et al., 2010; Seki et al., 2010; Okada et al., 2009). Thus, the cal-

cium signal in each glomerulus represents the pooled activity of

many LNs, and the signal in every glomerulus originates from

mostly the same group of individual LNs.

We found that each private odor elicited LN activity in all

glomeruli (Figures 1C and 1D and data not shown). Moreover,

similar spatial patterns of activity were elicited by different

odors. This outcome was observed in two independent rounds

of experiments performed with different odor stimulus sets,

each containing four private odors (odor set 1 and odor set

2). Similar results were also observed with a second Gal4

driver that labels about 25–30 GABAergic LNs (GH298-Gal4;

Figure S1). These two LN drivers are expressed in large but

mostly non-overlapping subsets of LNs. Together, they cover

8 of the 9 major morphological types of GABAergic LNs,

including both pan-glomerular LNs and LNs with selective

glomerular innervation patterns (Chou et al., 2010). Both

drivers and all odors produced essentially the same global

pattern of LN activity.

To evaluate the similarity across brains in the spatial pattern

of LN activity, we computed the average response across odors

for each brain and measured the relative level of LN calcium

signal in different glomeruli in that average image (Figure 1E).

This quantification showed that the relative level of LN activity

varied about 3-fold across glomeruli, with each glomerulus

exhibiting a characteristic level of activity in every brain. The dif-

ferences between glomeruli in the average amount of odor-

evoked LN calcium signal may reflect spatial heterogeneities

in calcium entry, buffering, or extrusion across the branches of

individual LNs.

Although the spatial patterns of LN activity were relatively

stimulus invariant, small differences were observed for some

stimuli (Figures 1C and 1D). To search for putative odor-specific

patterns of LN activity in an unbiased manner, we used principal

component analysis (PCA). In each imaging plane, we per-

formed PCA on the four images that were collected in the

same experiment, one image for each odor. If all odors elicited

the same pattern of activity, then almost all of the variance

across odors would be explained by one ‘‘basis image’’ (i.e.,

the first principal component or PC1) that resembles the

average across odors, and the remaining basis images (PC2

and upward) would simply capture noise. This prediction was

largely true: PC1 captured the stereotyped and global spatial
% (DA2); phenylacetaldehyde, 10�5 (VL2a); CO2, 5% (V); methyl acetate, 10�5

, �36 mm, and �48 mm).

der the control of NP3056-Gal4, but similar results were seen for GH298-Gal4

aging planes are selected to match the planes containing the glomeruli directly

three of the private odors in set 2 recruit additional LN activity in their cognate

veraged across odors within each experiment, and LN activity was quantified

erulus was normalized to the maximum glomerulus in that brain (n = 6–19

racteristic level of LN activity (one-way ANOVA, p = 10�85). Inset shows odor-

l of NP3056 for fly 1, GH298 for flies 2 and 3); see Figure S1 for glomerular
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Figure 2. Activation of Some Glomeruli Recruits Intraglomerular LN Activity in Addition to the Global Pattern of LN Activity

(A) Principal components of the LN activity patterns from Figure 1C (odor set 1). The input to each PCA is a set of four images, one for each of the four odors in the

stimulus set. The output of the analysis is therefore four principal components (PCs). Overall, odor responses (in Figure 1C) resemble a scaled version of the first

principal component (PC1). PCA was computed separately within each imaging plane and was applied only to the pixels contained in the antennal lobe (red ROI).

Note the different color scale for PC1 compared to PC2–PC4.

(B) Same as above but for odor set 2. Overall, odor responses (in Figure 1D) resemble a scaled version of PC1. In addition, some odors in this set evoke additional

activity in their cognate glomerulus (geosmin, phenylacetaldehyde, CO2), and thus their cognate glomerulus appears as PC2 in the corresponding imaging plane

(DA2 for geosmin, VL2a for phenylacetaldehyde, V for CO2). In the three imaging planes where these three glomeruli reside, they are indicated by arrowheads. The

spatial structure of PC2 is reproducible across experiments (n = 6–8 for odor set 2).

(C) LN activity in each of the eight glomeruli corresponding to our eight private odors. For each data point, DF/F was measured in one glomerulus and then

normalized to the averagemeasured across the entire antennal lobe (mean of 6–13 experiments, ± SEM). For each glomerulus, the amount of activity elicited by its

private odor was compared to the average activity elicited by the other three odors used in that experiment. For three glomeruli, there was a significant difference

between the private odor and other odors (DA2, VL2a, V; p = 0.003–0.01; p values are Bonferroni-corrected for multiple comparisons). These were also the

glomeruli which emerged as principal components in PCA (A and B). For the other glomeruli, there was no significant difference.
pattern evoked by all odors (Figures 2A and 2B), and it ac-

counted for most of the explainable variance in the data (Fig-

ure S2). However, PCA also pulled out three glomeruli that

were modulated independently of other glomeruli. These three

glomeruli are DA2, VL2a, and V. These are the cognate

glomeruli for geosmin, phenylacetaldehyde, and CO2, respec-

tively, and they each consistently emerged as PC2 in the appro-
576 Neuron 85, 573–589, February 4, 2015 ª2015 Elsevier Inc.
priate position and imaging plane in the experiments that

included these odors (odor set 2, Figure 2B).

Thus, although all stimuli elicited a similar overall spatial

pattern of LN activity, some private odor stimuli appeared to elicit

additional activity in their cognate glomerulus. To test this idea

directly, we quantified the amount of LN activity in each of the

eight glomeruli targeted by our ‘‘private’’ odors. As expected,



we found that LN activity in DA2, VL2a, and V was significantly

stronger when the stimulus was the cognate private odor for

that glomerulus, as compared to other odors (Figure 2C). For

all other glomeruli (DM4, VM7, VA6, DL1, and DL5), there was

no significant difference between the level of LN activity elicited

by their cognate private odor and other odors (Figure 2C). This

analysis confirms the results of the unbiased PCA search:

some stimuli elicit additional intraglomerular inhibition, as well

as recruiting lateral inhibition to all other glomeruli.

In addition, these results indicate that PCA can successfully

identify glomeruli that are recruited in an odor-specific manner.

Notably, no other individual glomeruli, or subsets of glomeruli,

were observed in any principal components. Thus, although

PCA is demonstrably able to identify single glomeruli that are

modulated in an odor-specific manner, it does not identify any

additional glomeruli where LN activity is comodulated. This anal-

ysis argues that there are no strong inhibitory subnetworks link-

ing specific groups of glomeruli.

Next,weaskedwhether these results generalize acrossa range

of odor concentrations. We tested a family of concentrations for

several odors. In each case, we found that the relative level of

LN activity in different glomeruli was similar across odor concen-

trations. However, the overall level of LN activity grew with

increasing concentration (Figures 3A and 3C). Higher concentra-

tions activatemoreORN types and also drive higher spike rates in

activated ORNs (Hallem and Carlson, 2006). Both mechanisms

are likely to contribute to the overall increase in LN activity.

When we averaged LN activity across the antennal lobe and

plotted this against the logarithm of the odor-evoked field poten-

tial recorded from ORNs (Figure 3B), we observed a linear rela-

tionship for all odors (Figure 3D). Because the ORN field potential

scales linearly with the total number of ORN spikes (Olsen et al.,

2010), we can infer that LN activity scales with the logarithm of

total ORN spike rate.

Interestingly, not all odors were equally efficient at recruiting

LN activity, even when they evoked equal levels of total ORN ac-

tivity. For example, 10�4 pentyl acetate and 10�6 E2-hexenal eli-

cited similar levels of total ORN activity (Figure 3B). However,

10�4 pentyl acetate elicited stronger overall LN activity than

did 10�6 E2-hexenal (Figures 3A and 3C–3E). This difference

may reflect the fact that the pentyl acetate stimulus elicits ORN

spiking that is distributed across more ORN types (Hallem and

Carlson, 2006). Alternatively, or in addition, some ORN or PN

types may make particularly strong synapses onto LNs.

In sum, these results show that ORN input to a single glomer-

ulus can recruit LN activity globally in all glomeruli and that the

relative level of LN activity across most glomeruli is similar for

all odor stimuli. Stimulation of some ORN types elicits additional

LN activity in their target glomeruli. Finally, the level of LN activity

in each glomerulus scales with the logarithm of total ORN firing

rate. Taken together, these results indicate that lateral inhibition

in the antennal lobe is broadly recruited by inputs pooled across

most glomeruli and argue against selective interactions between

neurons corresponding to specific subnetworks of glomeruli.

Lateral Inhibition Is Target Specific
We next turned our attention from the recruitment of LNs to the

consequences of LN activation. In particular, we asked whether
LN activation has different effects on different antennal lobe

projection neurons (PNs), the second-order neurons of the ol-

factory system. To activate LNs, we used an optogenetic

method rather than odor stimuli, an approach that confers

several advantages. First, by not using odors, we avoided elic-

iting varying levels of excitation to different PNs, a situation that

would confound our measurements of inhibition in PNs. Sec-

ond, optogenetics allows for the direct, robust, and scalable

activation of LNs.

We expressed the light-activated cation channel channelrho-

dopsin-2 (ChR2) in a large subset of LNs under the control of

NP3056-Gal4. Whole-cell recordings from LNs that express

ChR2 confirmed that LN spike rates rise with increasing light

intensity, and light evokes no response in ChR2-negative LNs

(Figure S3). Calcium imaging of ChR2-mediated LN activation re-

vealed that interleaved light and odor stimuli elicit essentially

identical spatial patterns of LN activity (Figures 4A and 4B).

Thus, optogenetic LN activation serves as a convenient stand-

in for odor-evoked LN activation.

To measure the consequences of LN activation, we moni-

tored spontaneous excitatory postsynaptic currents (sEPSCs)

in PNs, which arise from spontaneous spiking in ORNs (Fig-

ure 4C; Kazama and Wilson, 2008, 2009). Spontaneous EPSCs

are a sensitive measure of inhibition because the primary locus

of GABAergic inhibition is at ORN axon terminals, with a more

minor role for inhibition at PN dendrites (Olsen and Wilson,

2008; Root et al., 2008). We note that stimulating GABAergic

LNs can recruit not only lateral inhibition, but also lateral excita-

tion, because GABAergic LNs are electrically coupled to

specialized cells that also couple to PNs (Huang et al., 2010;

Yaksi and Wilson, 2010). To eliminate this confound, we con-

ducted these experiments in a genetic background that blocks

these electrical connections (shakB mutant; Yaksi and Wilson,

2010).

We observed that optogenetic activation of LNs suppressed

sEPSCs in most PNs, and this effect was blocked by GABA re-

ceptor antagonists (Figures 4C and 4D). In PNs, increasing light

intensity increased the suppression of sEPSCs (Figure 4E), and

we took the slope of the relationship between sEPSC activity

and light intensity as a measure of the sensitivity of each PN to

LN activation (Figure 4F). As a control, we confirmed there was

little effect of light in control genotypes (Figures 4E and 4F).

We thenmeasured sensitivity to inhibition in a large PN cohort.

Each PN was filled with biocytin and was visualized after the

recording to identify the glomerulus containing its dendrites (Fig-

ure 5A). We recorded from a large number of PNs (n = 46) such

that many glomeruli were sampled multiple times. We normal-

ized each PN’s sensitivity to that of the most sensitive PN, so

that the most sensitive PN is assigned a value of 1. Strikingly,

we observed that sEPSCs were completely suppressed in the

most sensitive PNs, whereas sEPSCs were almost completely

unaffected in other PNs (Figure 5B). Across the population of

PNs we sampled, sensitivity to LN activation was continuously

and roughly normally distributed (Figure 5C). Finally, PNs

corresponding to the same glomerulus were significantly more

similar than PNs belonging to different glomeruli (Figure 5D).

Together, these results indicate that glomeruli vary significantly

in their sensitivity to GABAergic inhibition and that sensitivity to
Neuron 85, 573–589, February 4, 2015 ª2015 Elsevier Inc. 577



Figure 3. LN Activity Increases with Total ORN Input

(A) Odor-evoked calcium signals in LNs elicited by a family of concentrations for each odor. GCaMP3 is expressed under the control ofGH298-Gal4. Note that the

color scale differs from that in Figure 1. Scale bar, 20 mm. Different stimuli elicit similar spatial patterns of LN activity, but with different magnitudes. The last

column (red outline) is the response to the highest concentration (10�2) rescaled tomatch the response to an intermediate concentration (10�4): note the similarity

in spatial patterns.

(B) Local field potentials recorded in an antenna elicited by the same stimuli. The black bar is the 500 ms odor stimulus period.

(C) Overall levels of LN activity increase with odor concentration. For each concentration of each odor, LN activity (%DF/F) was averaged across all glomeruli and

experiments. Error bars are ± SEM across experiments. Lines are Hill equation fits. Either GH298-Gal4 (5–7 experiments) or NP3056-Gal4 (3 experiments) was

used to drive GCaMP expression; the two data sets were pooled because results were similar.

(D) Overall levels of LN activity depend linearly on the logarithm of ORN input. LN data is the same as in (C). ORN input is measured by averaging local field

potential recordings (8 antennal recordings like that in B, averaged together with 5 palp recordings, each weighted according to the proportion of ORNs housed in

each respective structure, ± SEM; see Supplemental Experimental Procedures). Analysis of covariance indicates a significant interaction between LN activity and

odor across concentrations (p = 0.002).
inhibition is a stereotyped property of each glomerulus, ranging

from near-total insensitivity to near-total inhibition. In other

words, inhibition is ‘‘target specific,’’ even though interneurons

are recruited nonspecifically.
578 Neuron 85, 573–589, February 4, 2015 ª2015 Elsevier Inc.
Variation in GABA Release Does Not Explain Why
Glomeruli Vary in Their Sensitivity to Inhibition
Whatmechanisms explain why some glomeruli are very sensitive

to LN activation, while others are very insensitive? One obvious
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(A) Both GCaMP3 and channelrhodopsin-2 (ChR) were expressed in LNs. LNs were excited using either odor or light in the same brain. LN activity increases with

increasing levels of odor (2-butanone) or light (470 nm). There were no light-evoked calcium signals without ChR (bottom).

(B) Each symbol compares the amount of LN activity evoked by odor versus light in a glomerulus in the same experiment (n = 40 data points in five brains). Activity

is normalized to the average amount of activity in the antennal lobe elicited by the respective stimulus. The dotted line is unity. The correlation between odor- and

light-evoked activity is strong and significant (R2 = 0.80, p = 10�14), meaning the two methods produce the same spatial pattern.

(C) ChR-expressing LNs were excited using light while sEPSCs were recorded from a PN. Optogenetic excitation of LNs suppresses sEPSCs, and this effect is

reversibly blocked by GABAA and GABAB receptor antagonists (5 mM picrotoxin and 50 mM CGP54626; light is 488 nm, 22 mW/mm2).

(D) The effect of LN activity on sEPSCs is significantly different in GABA receptor antagonists compared to saline or wash (*p = 0.006, **p = 0.002; paired t tests,

n = 3). Open circles are individual cells; filled circles are mean ± SEM.

(E) Increasing light intensity produces increasing suppressionof sEPSCs in a recordingwhere LNsexpressChR. Light hasminimal effectwithoutChR (bottom row).

(F) Percent sEPSC activity versus light intensity for a representative cell from each genotype. This metric can range from 0 (full suppression) to 100 (no sup-

pression); see Supplemental Experimental Procedures for details. Lines are fits constrained to intersect the y axis at 100. Across a test set of PNs, the slopes of

the fitted lines were significantly different betweenChR-expressing and control flies (mean ± SEM; n = 8 and 5, respectively; p = 23 10�4, unpaired t test, data not

shown).
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Figure 5. Glomeruli Vary Widely and Stereotypically in Their Sensitivity to LN Activation
(A) Examples of biocytin fills used to identify recorded PNs (green). Magenta is neuropil (nc82 Ab), which marks glomerular boundaries. Scale bar, 20 mm.

(B) Examples of PN responses to optogenetic activation of LNs. Sensitivity ranges from nearly totally insensitive (e.g., glomerulus DL4) to almost completely

inhibited (e.g., glomerulus VA3). Light was delivered at 22 mW/mm2.

(C) Sensitivity to LN activation for all recorded PNs (n = 46). Sensitivity is measured as the slope of the line fitted to the plot of percent sEPSC activity versus light

intensity (see Figure 4F). Slopes are normalized across cells by setting the most negative slope (most inhibited) to 1.

(D) Sensitivity to LN activation for those glomeruli in which more than one PN was sampled (2–6 PNs per glomerulus, mean ± SEM). PNs in the same glomerulus

are significantly more similar than those in different glomeruli (one-way ANOVA, p = 8 3 10�6).
possible mechanism is the variation across glomeruli in LN

calcium signals (Figure 1E), which would lead to differences in

GABA release. However, variation in LN calcium correlated

only weakly with variation in sensitivity to LN activation, and

this correlation fell short of statistical significance (Figure 6A).

Variation in LN calcium may indeed be a mechanism that gener-

ates functional diversity across glomeruli, but it is evidently not

themajormechanism. It appears to be overshadowed by a larger

source of functional diversity.

GABA release may also be affected by variation in LN inner-

vation density (Chou et al., 2010; Das et al., 2008; Okada et al.,

2009; Seki et al., 2010; Wilson and Laurent, 2005). Note that

variation in LN innervation density does not necessarily pro-

duce variation in LN calcium signals, because LN calcium sig-

nals are normalized to resting fluorescence (DF/F); thus, these

are potentially independent sources of functional diversity. To

measure LN innervation density, we expressed a marker of

neurotransmitter release sites (bruchpilot:GFP) in a large group

of LNs (Figure 6B). Confocal imaging showed that the density

of LN release sites varied about 2-fold across glomeruli,
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and these levels were stereotyped across brains, with each

glomerulus exhibiting a characteristic density (Figure 6B).

However, variation in the density of LN release sites was not

correlated with sensitivity to LN activation (Figure 6C). More-

over, the density of LN release sites varied over a substantially

smaller range than did sensitivity to inhibition. We also ob-

tained similar results with two additional anatomical markers

(n-synaptobrevin:GFP and CD8:GFP) (Figure S4). Additionally,

we note that variation across glomeruli in LN innervation

density was not correlated with variation in odor-evoked LN

calcium signals (R2 = 0.004, 0.77, Figure S4), implying that

these two determinants of GABA release do not reinforce

each other.

In sum, there are mechanisms that may cause GABA release

to vary across glomeruli: LN calcium increases are nonuniform,

and LN innervation density is nonuniform. However, these two

mechanisms are not correlated with each other. Nor are they

significantly correlated with variations in the overall magnitude

of inhibition in response to LN activation. This motivated us to

investigate a postsynaptic mechanism instead.



Figure 6. The Density of LN Release Sites

DoesNot Predict Sensitivity to LN Activation

(A) Sensitivity to LN activation is not significantly

correlated with LN calcium signals (R2 = 0.28,

permutation test, p = 0.12). Error bars are SEM; no

error bar implies n = 1.

(B) Inset: Single confocal section through the

antennal lobe of a fly expressing a marker of pre-

synaptic release sites (bruchpilot:GFP) in a large

subset of LNs under the control of NP3056-Gal4.

Neuropil is immunostained (nc82 Ab) to visualize

glomerular boundaries. Scale bar, 20 mm. Graph

showsmeasurements of bruchpilot:GFP signal per

unit glomerular volume, normalized within each

brain to the glomerulus with the highest value. Data

are the mean of six measurements, ± SEM. The

density of bruchpilot:GFP varies significantly

across glomeruli (one-way ANOVA, p = 10�36).

Similar results were observed with two other

markers of LN morphology (Figure S4).

(C) Sensitivity to LN activation (data from Fig-

ure 5C) is not correlated with the density of LN

release sites (R2 = 0.02, p = 0.67, permutation test).

Error bars are SEM.
Sensitivity to GABA Varies across Glomeruli
Variation in sensitivity to GABA is another mechanism that

could explain the variation in sensitivity to LN activation. To

investigate this idea, we used full-field photolysis of DPNI-

caged GABA (Trigo et al., 2009) to deliver a brief pulse of

GABA to the brain. This approach is more reproducible than

iontophoresis or pressure ejection, and, because neurotrans-

mitter is delivered rapidly, this method avoids GABA receptor

desensitization.

In most PNs, GABA robustly suppressed sEPSCs, and this

effect was reversibly blocked by GABA receptor antagonists

(Figures 7A and 7B). Increasing light intensity increased the

suppression of sEPSCs (Figure 7C). The slope of the relationship

between sEPSC activity and light intensity was taken as the

measure of GABA sensitivity of each cell (Figure 7D). As a con-

trol, we confirmed that the flash of uncaging light had little effect

on sEPSC activity in the absence of caged GABA, even at the

highest intensities (Figure 7D).

We measured GABA sensitivity in a large PN cohort, again

using biocytin fills to identify the glomerulus containing the den-

drites of each PN. In the course of many recordings, a large

number of glomeruli were sampled multiple times each. For

several of the sampled glomeruli, we subsequently identified

Gal4-drivers that label their corresponding PNs, enabling us to

make targeted recordings of GFP-labeled PNs to increase the

number of replicates for those glomeruli. In total, we recorded

from 52 cells.
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GABA sensitivity varied dramatically

across glomeruli, from essentially zero

suppression to complete suppression

(Figure 8A). Across the entire population,

GABA sensitivity was continuously and

roughly normally distributed (Figure 8B).

PNs corresponding to the same glomer-
ulus had much more similar sensitivities to GABA than PNs

from different glomeruli (Figure 8C), indicating that sensitivity

to GABA is a highly stereotyped feature of each glomerulus.

We found that sensitivity to LN activation, measured by opto-

genetic activation of LNs (Figure 5), was highly correlated with

sensitivity to GABA (Figure 8D). For instance, PNs corresponding

to glomerulus DC4 were among the least sensitive to both GABA

and LN activity, whereas PNs corresponding to VA3were among

the most sensitive to both GABA and LN activity. Strikingly,

sensitivity to LN activation and sensitivity to GABA both vary

over a wide range across glomeruli (Figure 8E), consistent with

the idea that variation in GABA sensitivity is large enough to

account for the variation in sensitivity to inhibition.

Overall, our results support a model where sensitivity to LN

activation is primarily specified by sensitivity to GABA. In other

words, the lifetime strength of lateral inhibition in each glomer-

ulus is mainly an autonomous feature of that glomerulus, not

a property of the LN network. Although the properties of the

LN network do vary across glomeruli—namely, calcium signals

and innervation density—these variations are relatively modest

and are not strongly correlated with sensitivity to inhibition.

Sensitivity to Inhibition Is Independent of Odor Tuning
Glomeruli with high and low sensitivity to inhibition are spatially

distributed throughout the antennal lobe (Figure 9A). What is

the relationship between the strength of inhibition in a glomerulus

and its odor tuning?We took advantage of a large data set of the
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Figure 7. Evaluating GABASensitivity Using

Flash Photolysis of Caged GABA

(A) Full-field photolysis of DPNI-caged GABA

(390 nm light, 7 mW/mm2) transiently suppresses

sEPSCs in a PN. Suppression is reversibly blocked

by GABA receptor antagonists (5 mM picrotoxin,

50 mM CGP54626).

(B) Suppression requires caged GABA and func-

tional GABA receptors (n = 3, mean ± SEM). Light

was delivered at 7–8 mW/mm2.

(C) In the presence of caged GABA, sEPSCs are

increasingly suppressed by higher light intensities.

(D) Percent sEPSC activity and fits are calculated

as in Figure 4F. Data are shown from one repre-

sentative cell in caged GABA and one in regular

saline (mean ± SEMacross trials). Across a test set

of PNs, the slopes of the fitted lines were signifi-

cantly different in saline versus caged GABA (n = 5

and 7, p = 10�4, data not shown).
odor response profiles of Drosophila odorant receptors (Hallem

and Carlson, 2006). Each receptor in that data set can be

matched with a glomerulus (Couto et al., 2005; Fishilevich and

Vosshall, 2005). For each glomerulus present in both that data

set and ours, we askedwhether there is a systematic relationship

between tuning breadth and sensitivity to LN activation or sensi-

tivity to GABA. We quantified tuning breadth using the lifetime

sparseness metric, which describes narrowness of tuning over

all stimuli (Vinje and Gallant, 2000).

Notably, tuning breadth was uncorrelated with either sensi-

tivity to LN activation or sensitivity to GABA (Figures 9B and

9C). Similar results were obtained using othermeasures of tuning

breadth, including the total lifetime activation of the odorant re-

ceptor across all odors and the percentage of odors that elicit

inhibitory responses in that odorant receptor (R2 values range

from 0.02 to 0.23, and p values range from 0.23 to 0.72, across

all comparisons). Thus, sensitivity to inhibition is independent

of tuning breadth. This result is clearly illustrated by four

glomeruli that are particularly narrowly tuned: DA1, VA1d, and

VA1v, which respond selectively to fly pheromones, and DA2,

which responds selectively to an aversive odor produced by

microbes (Stensmyr et al., 2012; van der Goes van Naters and

Carlson, 2007; Clyne et al., 1997). Although these glomeruli are

all extremely narrowly tuned, their sensitivities to LN activation

(and/or GABA) bracket the entire observed distribution (Figures

9B and 9C).

Next, we asked if glomeruli that prefer the same odors have

more similar sensitivities to inhibition. For each pairwise combi-

nation of glomeruli, we computed the Euclidean distance be-

tween their odor response profiles and also the difference in their

sensitivity to LN activation. As before, thesemeasurements were
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uncorrelated (Figure 9D). An analysis of

differences in sensitivity to GABA yielded

similar results (Figure 9E). Finally, neither

sensitivity to LN activation nor sensitivity

to GABA correlates with the position of

each glomerulus in odor response space,

as described by PCA (R2 ranges from
10�6 to 0.053, p values range from 0.55 to 0.99; for loadings

on PC1–PC3, see Supplemental Experimental Procedures).

Together, these analyses imply that susceptibility to inhibition

is independent of odor tuning.

As a consequence of this organization, a single odor can elicit

activity in multiple glomeruli having very different sensitivities to

inhibition. For example, glomeruli DL2 and DC4 are robustly co-

activated by several organic acids, including propionic acid and

butyric acid (Ai et al., 2010; Silbering et al., 2011; Yao et al.,

2005), but these are among themost sensitive and least sensitive

glomeruli to inhibition. Several alcohols and esters (Hallem

and Carlson, 2006) coactivate glomeruli DM5, DM6, VM5v, and

VC4, but whereas the first two glomeruli in this list are relatively

sensitive to inhibition and/or GABA, the other two are relatively

insensitive.

These findings indicate that heterogeneity in sensitivity to

inhibition represents an axis of glomerular specialization that

is orthogonal to odor tuning. Thus, most odors are likely to acti-

vate an ensemble of glomeruli having varied sensitivities to inhi-

bition. As a result, an odor will be encoded in parallel by channels

that are subject to relatively strong lateral inhibition and channels

that are only weakly affected by lateral inhibition.

DISCUSSION

Odor-Invariant Recruitment of Global Lateral Inhibition
In topographic circuits, lateral inhibition occurs preferentially

between neurons having similar stimulus tuning (Kaas, 1997).

This organization means that inhibition would be recruited

most powerfully when it is predicted to be most useful for imple-

menting gain control and reducing correlations, i.e., when this



Figure 8. Sensitivity to LN Activation Is Predicted by Sensitivity to GABA

(A) Examples of PN responses to GABA uncaging. Sensitivity ranged from nearly completely insensitive (e.g., glomerulus VA1d) to nearly completely suppressed

(e.g., glomerulus VA3). Light was delivered at 11 mW/mm2.

(B) GABA sensitivity for all PNs (n = 52). Sensitivity for each cell is measured as the slope of the line fitted to the plot of percent sEPSC activity versus light intensity

(see Figure 7D). Slopes are normalized across cells by setting the most negative slope (most suppressed) to 1.

(C) GABA sensitivity of PNs for those glomeruli in which more than one PN was sampled (n = 2–6 PNs per glomerulus, mean ± SEM). PNs in the same glomerulus

are significantly more similar than those in different glomeruli (one-way ANOVA, p = 10�9).

(D) Sensitivity toGABA versus sensitivity to LN activation, for all glomeruli where both types ofmeasurements are available (R2 = 0.65, p = 0.002, permutation test).

Light green points are singly sampled for both measurements, dark green points are singly sampled for one measurement, and black points are sampledmultiple

times for both measurements. Error bars indicate SEM.

(E) Across glomeruli, sensitivity to LN activation and sensitivity to GABA vary over the same large range. By comparison, LN calcium signals (DF/F, Figure 1) and

LN release site density (Figure 6) span a narrower range. Each symbol represents a different glomerulus.
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Figure 9. Sensitivity to Inhibition Is Orthog-

onal to Odor Tuning

(A) Schematic showing three sections through the

antennal lobe, from anterior (left) to posterior

(right). Glomeruli are color coded according to

their sensitivity to LN activation and/or GABA,

with dark blue being the most sensitive and light

blue the least sensitive. White glomeruli were not

sampled.

(B) For each glomerulus, sensitivity to LN activa-

tion is plotted against the odor selectivity of its

cognate odorant receptor, quantified as lifetime

sparseness (0, nonselective; 1, maximally selec-

tive). There is no significant correlation (R2 = 0.17,

p = 0.27). Light green points are singly sampled,

dark green points are sampled 2–4 times, black

points are sampled at least 5 times. All p values

were determined by a permutation analysis (see

Supplemental Experimental Procedures).

(C) Same as (B), but for sensitivity to GABA

(R2 = 0.02, p = 0.71).

(D) Difference in sensitivity to LN activation

versus the Euclidean distance between ORN

response profiles, for every pairwise combination

of sampled glomeruli (R2 = 0.04, p = 0.26).

(E) Same as (D), but for sensitivity to GABA

(R2 = 0.03, p = 0.26).

(F) Odors are simultaneously encoded by glomeruli

subject to strong lateral inhibition and other

glomeruli subject to weak lateral inhibition.
population of neurons is collectively receiving strong excitatory

input.

Here we describe an extreme example of a different circuit or-

ganization. We find that stimulating even a single glomerulus re-

cruits GABAergic inhibition in all glomeruli. Inhibition scales with

the log intensity of input to the circuit and is almost completely

untuned to odor identity (i.e., the identity of the glomerulus

whose cognate ORNs are active). Thus, the signals that recruit

lateral inhibition are pooled broadly across most or all channels

in the circuit. This architecture finds parallels in several non-

topographic or only weakly topographic regions of vertebrate

neocortex where inhibition is also poorly tuned (Liu et al., 2011;

Poo and Isaacson, 2009; Wu et al., 2008). Untuned inhibition in
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these non-topographic regions likely re-

flects the unbiased local pooling of

diverse excitatory inputs from nearby

neurons onto individual inhibitory inter-

neurons (Bock et al., 2011). Thus, the

antennal lobe can be viewed as a micro-

circuit that implements inhibition via unbi-

ased pooling; this microcircuit organiza-

tion may be repeated on a local scale in

more complex vertebrate circuits.

Notably, a few odors elicited additional

LN activity in the glomerulus directly

targeted by the ORNs they activated.

Intriguingly, these odors (geosmin, phe-

nylacetaldehyde, and CO2) convey sig-

nals of particular behavioral relevance to
the fly, and they are unusually selective for a single ORN type

over a wide concentration range (Stensmyr et al., 2012; Grosjean

et al., 2011; Suh et al., 2004; de Bruyne et al., 2001). Thus, when

an odor activates these ORNs, the rest of the ORN population is

typically quiet. Gain control in these glomeruli must therefore rely

more heavily on intraglomerular inhibition, rather than lateral in-

hibition. For this reason, it may be useful to have unusually strong

intraglomerular inhibition in these glomeruli. By contrast, a

typical glomerulus receives ORN input that is correlated with

ORN input to many other glomeruli (Haddad et al., 2010; Olsen

et al., 2010; Luo et al., 2010). Gain control in a typical glomerulus

can therefore rely on both lateral inhibition and intraglomerular

inhibition.



As a population, GABAergic LNs ramify throughout the

antennal lobe, making connections with all glomeruli. Most indi-

vidual LNs also ramify throughout most or all glomeruli (Chou

et al., 2010; Seki et al., 2010; Okada et al., 2009). However, anat-

omy alone cannot tell us whether inhibition is recruited in a stim-

ulus-specific manner. One reason is that some LNs arborize in

small subsets of glomeruli (Chou et al., 2010; Seki et al., 2010;

Okada et al., 2009), and in principle these LNs might mediate

inhibitory subnetworks between specific glomeruli. Selective

subnetworks might also arise within panglomerular LNs due to

passive electrotonic compartmentalization (Christensen et al.,

2001) or active conductances that could shape the path of

voltage propagation within an LN (Husch et al., 2009). However,

our results indicate that such subnetworks do not contribute

measurably to the spatial pattern of overall GABAergic inhibition

in the Drosophila antennal lobe.

Functional Implications of Broad Lateral Inhibition
Lateral inhibition in this circuit increases the selectivity of PN re-

sponses to odors (Olsen andWilson, 2008; Olsen et al., 2010). At

first blush, this seems incompatible with our finding that inhibi-

tion is global and untuned. How can untuned inhibition narrow

tuning?

Untuned inhibition can narrow tuning if it interacts with

a nonlinearity. If the nonlinearity is postsynaptic—namely, the

spike threshold—the result is the so-called ‘‘iceberg effect’’:

the iceberg of synaptic drive is pushed down by inhibition, and

so its profile becomes narrower (Isaacson and Scanziani,

2011; Vidyasagar et al., 1996). In the olfactory circuit we describe

here, the mechanism is likely to be different, because lateral in-

hibition acts primarily on the presynaptic side of the ORN-to-

PN synapse, with only a minor postsynaptic component (Olsen

and Wilson, 2008; Root et al., 2008). Like virtually all synapses,

this synapse is nonlinear, because vesicular release saturates

at high presynaptic firing rates (Kazama and Wilson, 2008). A

simple model predicts that this saturation broadens the tuning

of the postsynaptic cell (Abbott et al., 1997). Presynaptic lateral

inhibition decreases the probability of vesicular release (Olsen

and Wilson, 2008), which should counteract saturation and re-

narrow the postsynaptic tuning curve.

Importantly, this effect is dynamic, because our results

demonstrate that LN activity grows with ORN input to the entire

circuit. Provided that lateral inhibition grows as input to the cir-

cuit increases, theoretical models show that even all-to-all inhi-

bition can reduce redundancy in neural codes, improve stimulus

separability, and confer robustness to stimulus intensity (Cleland

et al., 2007; Luo et al., 2010; Olsen et al., 2010).

What might be the benefit of recruiting inhibition in each

glomerulus on the basis of activity in all glomeruli—rather than

just a subset of glomeruli? One potential benefit would be to

minimize noise. A major function of inhibition in this circuit is

gain control, i.e., a negative feedback loop that keeps circuit

output within a relatively narrow dynamic range. When the signal

that drives gain control is noisy, then gain control will re-inject

that noise into a circuit (Rieke and Rudd, 2009). This effect is

most pronounced when the signals that drive gain control are

pooled over a small region, in either time or space (Dunn and

Rieke, 2008). PN activity is noisy, and most of this noise comes
from ORNs (Kazama and Wilson, 2009; Bhandawat et al., 2007).

Because noise in different ORNs is independent (Kazama and

Wilson, 2009), pooling signals over many glomeruli may provide

an avenue for LNs to reduce the noise that they re-inject into the

circuit.

Target Specificity of Lateral Inhibition
A major finding of our study is that, whereas recruitment of LNs

is independent of cell identity, glomeruli vary widely in their

sensitivity to lateral inhibition. Activity in some glomeruli was

nearly completely suppressed by optogenetic activation of

LNs, whereas activity in other glomeruli was almost completely

unaffected. Sensitivity to inhibition was a stereotyped property

of each glomerulus, with the same glomerulus having a similar

level of sensitivity in different brains.

In other neural circuits, there are many examples of target

neurons receiving inhibition selectively from specific classes

of inhibitory neurons (e.g., Briggman et al., 2011; Gibson et al.,

1999; Yoshimura and Callaway, 2005). Our study illustrates a

different type of specificity. Namely, our study represents one

of the clearest demonstrations of systematic differences across

target neurons in the overall strength of inhibition, pooled across

all inhibitory inputs to a target neuron and across all stimuli.

Our results show that themajor mechanism underlying hetero-

geneous sensitivity to inhibition is variation in GABA sensitivity.

GABA sensitivity was highly correlated with sensitivity to LN acti-

vation on a glomerulus-by-glomerulus basis. In contrast, we

found no significant correlation between sensitivity to LN activa-

tion and the factors affecting GABA release (i.e., LN calcium sig-

nals and the density of LN release sites). Taken together, these

results support the idea that variations in the overall level of inhi-

bition across glomeruli are primarily specified by variations in

target sensitivity to GABA, with a more minor role for variations

in GABA release.

Functional Implications of Target Specificity
What might be the function of glomeruli that are relatively insen-

sitive to LN activation? These glomeruli might be particularly

useful when it is important to minimize noise. LNs are clearly a

source of noise: they spike intermittently even in the absence

of a stimulus, and their odor responses vary from trial to trial (Wil-

son and Laurent, 2005; Chou et al., 2010). This is true even

though LNs can reduce their noise by pooling excitation from

many glomeruli. Noise arising from LNs is visible in recordings

from PNs (Kazama and Wilson, 2009). Glomeruli that are insen-

sitive to inhibition would be immune to this noise. We propose

that higher brain areas might rely on these glomeruli when the

odor signals are weak and near the noise threshold for detection.

Glomeruli that are insensitive to inhibition are also potentially

useful encoders of absolute odor concentration. Absolute odor

concentration must be encoded in the activity of some PNs,

because flies can remember the concentration of an odor they

were trained to avoid (Dudai, 1977; Yarali et al., 2009). This is

not a trivial problem: as we show, LN activity grows with odor

concentration, and so increases in inhibition counter increases

in stimulus intensity, potentially creating ambiguity about

odor concentration in higher brain regions. Glomeruli that are

insensitive to inhibition should have the steepest concentration
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response functions, at least when odor signals are weak enough

to avoid saturating PNs.

Conversely, when odor signals are strong, higher brain regions

might rely preferentially on glomeruli that are sensitive to inhibi-

tion. This is because lateral inhibition prevents saturation in these

glomeruli. In this way, inhibition can improve stimulus discrimina-

tion (Olsen et al., 2010; Luo et al., 2010).

Importantly, we show here that one odor tends to simulta-

neously activate glomerular channels that are sensitive and

insensitive to inhibition. These different sorts of glomeruli thus

represent parallel channels encoding the same signal. Our re-

sults are reminiscent of a recent study reporting that a visual

stimulus simultaneously activates two types of retinal ganglion

cells, one that adapts and one that shows anti-adaptation (Kast-

ner and Baccus, 2011). There is also precedent for the idea that

behaviors might correlate with certain glomeruli under particular

conditions, but different glomeruli under other conditions. For

example, in the Drosophila larva, one glomerulus drives behav-

ioral responses to ethyl acetate at low concentrations, whereas

another glomerulus drives responses to high concentrations,

even though high concentrations coactivate both glomeruli

(Kreher et al., 2008).

In sum, our results are a departure from the classic idea of

selectivity in inhibitory circuits. Classically, inhibition is under-

stood as stimulus specific, because inhibition is often strongest

between neurons having the same preferred stimuli, and target

neurons are assumed to have uniform sensitivity to inhibition.

This statement characterizes the classic case of topographic

neural circuits. Our results illustrate a case of a non-topographic

circuit where recruitment of inhibition is fairly nonspecific, but

target neurons nonetheless have specific sensitivities to inhibi-

tion. We propose that this organization may find parallels in other

neural circuits, and that it may represent a way to effectively

implement lateral inhibition while minimizing some of the associ-

ated problems—namely, noise and ambiguity. This proposal is

supported by the recent finding that neighboring pyramidal

neurons in mammalian cortex can have dramatically different

levels of total inhibitory synaptic drive (Xue et al., 2014). Our find-

ings illustrate how tradeoffs in information processing can be

resolved by allowing a stimulus to be encoded in parallel by indi-

vidual neurons having different types of network interactions.

This is an example of how neural population diversity can allow

problems in neural computation to be resolved using simple

parts (Marder and Goaillard, 2006).

EXPERIMENTAL PROCEDURES

Flies

All experiments were performed on female flies 2–3 days post-eclo-

sion, with the exception of calcium imaging experiments, which were per-

formed in older flies (see Supplemental Experimental Procedures),

and experiments done in the shakB2 background, which were performed

in males. Genotypes used for each figure are as follows (see Supple-

mental Experimental Procedures for further information regarding each

transgene):

Figure 1: (A and B) pebbled-Gal4; UAS-GCaMP3.0. (C and D) UAS-

GCaMP3.0; NP3056-Gal4/TM6B. (E) Pooled from UAS-GCaMP3.0/SM6;

NP3056-Gal4, and UAS-GCaMP3.0; NP3056-Gal4/TM6B, and UAS-

GCaMP3.0/SM6; GH298-Gal4, and UAS-GCaMP3.0; GH298-Gal4/TM6B.
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Figure 2: (A and B) UAS-GCaMP3.0; NP3056-Gal4/TM6B. (C)

Pooled from UAS-GCaMP3.0/SM6; NP3056-Gal4, and UAS-GCaMP3.0;

NP3056-Gal4/TM6B, and UAS-GCaMP3.0/SM6; GH298-Gal4, and UAS-

GCaMP3.0; GH298-Gal4/TM6B.

Figure 3: (A and B) UAS-GCaMP3.0; GH298-Gal4/TM6B. Note that trans-

genes were not used in (B). (C–E) Pooled from UAS-GCaMP3.0; GH298-

Gal4/TM6B and UAS-GCaMP3.0; NP3056-Gal4/TM6B.

Figure 4: (A and B) +ChR: UAS-GCaMP3.0/UAS-ChR2:YFP-C; NP3056-

Gal4. �ChR: UAS-GCaMP3.0/SM6; NP3056-Gal4. (C and D) shakB2/

Y; UAS-ChR2:YFP-C/SM6; UAS-ChR2:YFP-B/NP3056-Gal4. (E and

F) shakB2/Y; UAS-ChR2:YFP-C/SM6; UAS-ChR2:YFP-B/NP3056-Gal4

(ChR+ condition) or shakB2/Y; UAS-ChR2:YFP-C/SM6; UAS-ChR2:YFP-

B/TM6B (no Gal4 control, ChR� condition).

Figure 5: shakB2/Y; UAS-ChR2:YFP-C/SM6; UAS-ChR2:YFP-B/NP3056-

Gal4.

Figure 6: (A and B) UAS-bruchpilot:GFP/SM6; NP3056-Gal4/+.

Figure 7: w1118.

Figure 8: (A–C) Pooled from GH146-Gal4, UAS-CD8:GFP (II), Mz19-Gal4,

UAS-CD8:GFP (II), NP3481-Gal4, UAS-CD8:GFP (X), GMR46E07-Gal4/

UAS-CD8:GFP (III), and w1118.

We also examined the expression pattern of Gal4 in a Gad1-Gal4 line that

was used in a prior study to evaluate spatial patterns of LN activity (Ng et al.,

2002). We found that this Gal4 line labels PNs as well as LNs (Figure S5; see

also Supplemental Experimental Procedures), which may contribute to why

Ng et al. obtained results that are different from our calcium imaging results.

Odor Delivery

All odor concentrations are reported as v/v dilutions in a solvent of paraffin oil.

Odors were delivered essentially as previously described (Bhandawat et al.,

2007), with minor modifications. The order of odor stimuli was independently

randomized in each experiment, except for the concentration series experi-

ments, where different concentrations of the same odor were always pre-

sented from least to most concentrated. The odor delivery tube was flushed

with clean air for 2 min when changing between odors. See Supplemental

Experimental Procedures for details.

Calcium Imaging of Odor-Evoked Activity

The antennal lobes were imaged in vivo from the dorsal side while constantly

perfusing the brain with oxygenated saline. GCaMP3 fluorescence was

imaged using a two-photon microscope at a frame rate of 7.8 Hz. By imaging

odor-evoked calcium signals in ORN axon terminals, we identified four hori-

zontal imaging planes (�12 mm, �24 mm, �36 mm, and �48 mm relative to

the dorsal surface of the antennal lobe neuropil), which collectively cover all

the glomeruli activated by any of the ‘‘private’’ odors we used. We therefore

focused our experiments on these four imaging planes, and we typically

sampled two of these planes within the time constraints of each individual

experiment. See Supplemental Experimental Procedures for details.

Calcium Imaging of Optogenetically Evoked Activity

Optogenetically evoked activity and odor-evoked activity were imaged

in essentially the same manner. ChR2 was excited with light delivered from

a fiber optic cannula coupled to an LED, with the tip of the cannula posi-

tioned above the antennal lobe. Light intensity was modulated by varying

the voltage to the LED. See Supplemental Experimental Procedures for

details.

Local Field Potential Recordings

See Supplemental Experimental Procedures.

Immunohistochemistry

Biocytin fills were processed as previously described (Wilson et al., 2004).

Both biocytin fills and LN anatomical data were acquired from fixed brains us-

ing a laser scanning confocal microscope. Fluorescence arising from LNs

(bruchpilot:GFP, n-synaptobrevin:GFP signal, or cytoplasmic GFP) originates

from direct fluorescence of the protein without amplification from immuno-

staining. See Supplemental Experimental Procedures for details.



Electrophysiology

In vivo whole-cell patch-clamp recordings were performed under visual con-

trol as previously described (Wilson et al., 2004). See Supplemental Experi-

mental Procedures for details.

Optogenetics and Light Calibration

Flies used for optogenetic experiments were cultured on medium supple-

mented with all-trans retinal. In Figures 4C–4F and 5, excitation of ChR2 was

achieved by delivering blue light through a 40 3 water-immersion objective,

and power density was modulated using a fine series of neutral density filters.

See Supplemental Experimental Procedures for details.

GABA Uncaging

The experimental preparation and solutions were shielded from room lights.

We verified that wash-in of DPNI-caged GABA did not change spontaneous

synaptic activity. GABA was uncaged using UV light delivered through a

40 3 water-immersion objective. Power density was modulated using neutral

density filters. In a subset of experiments, we confirmed that GABA receptor

antagonists abolished the effect of light on sEPSC activity. We found no sys-

tematic relationship between glomerular depth and sensitivity to GABA. See

Supplemental Experimental Procedures for details.

Analysis

See Supplemental Experimental Procedures for descriptions of PCA, analysis

of GCaMP3 DF/F within specific glomeruli, analysis of LN anatomical data,

quantification of sEPSC suppression, quantification of ORN odor selectivity,

and general statistical methods. Data from glomerulus VC3 were excluded

from our analyses because the odor tuning of VC3 PNs varied dramatically

across experimental replicates (see Supplemental Experimental Procedures).

Data for all glomerulus-by-glomerulus measurements in this study are pro-

vided in Table S1.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

six figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.neuron.2014.12.040.
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and Wang, J.W. (2008). A presynaptic gain control mechanism fine-tunes

olfactory behavior. Neuron 59, 311–321.

Rothschild, G., Nelken, I., and Mizrahi, A. (2010). Functional organization and

population dynamics in the mouse primary auditory cortex. Nat. Neurosci. 13,

353–360.

Sachse, S., and Galizia, C.G. (2002). Role of inhibition for temporal and spatial

odor representation in olfactory output neurons: a calcium imaging study.

J. Neurophysiol. 87, 1106–1117.

Schlief, M.L., and Wilson, R.I. (2007). Olfactory processing and behavior

downstream from highly selective receptor neurons. Nat. Neurosci. 10,

623–630.
588 Neuron 85, 573–589, February 4, 2015 ª2015 Elsevier Inc.
Seki, Y., Rybak, J., Wicher, D., Sachse, S., and Hansson, B.S. (2010).

Physiological and morphological characterization of local interneurons in the

Drosophila antennal lobe. J. Neurophysiol. 104, 1007–1019.

Shepherd, G.M., and Greer, C.A. (1998). Olfactory bulb. In The Synaptic

Organization of the Brain, G.M. Shepherd, ed. (New York: Oxford University

Press), pp. 159–203.

Silbering, A.F., and Galizia, C.G. (2007). Processing of odor mixtures in the

Drosophila antennal lobe reveals both global inhibition and glomerulus-spe-

cific interactions. J. Neurosci. 27, 11966–11977.

Silbering, A.F., Okada, R., Ito, K., and Galizia, C.G. (2008). Olfactory informa-

tion processing in the Drosophila antennal lobe: anything goes? J. Neurosci.

28, 13075–13087.

Silbering, A.F., Rytz, R., Grosjean, Y., Abuin, L., Ramdya, P., Jefferis, G.S., and

Benton, R. (2011). Complementary function and integrated wiring of the evolu-

tionarily distinct Drosophila olfactory subsystems. J. Neurosci. 31, 13357–

13375.

Soucy, E.R., Albeanu, D.F., Fantana, A.L., Murthy, V.N., and Meister, M.

(2009). Precision and diversity in an odor map on the olfactory bulb. Nat.

Neurosci. 12, 210–220.

Srinivasan,M.V., Laughlin, S.B., andDubs, A. (1982). Predictive coding: a fresh

view of inhibition in the retina. Proc. R. Soc. Lond. B Biol. Sci. 216, 427–459.

Stensmyr, M.C., Dweck, H.K., Farhan, A., Ibba, I., Strutz, A., Mukunda, L., Linz,

J., Grabe, V., Steck, K., Lavista-Llanos, S., et al. (2012). A conserved dedicated

olfactory circuit for detecting harmful microbes in Drosophila. Cell 151, 1345–

1357.

Stettler, D.D., and Axel, R. (2009). Representations of odor in the piriform cor-

tex. Neuron 63, 854–864.

Suh, G.S., Wong, A.M., Hergarden, A.C., Wang, J.W., Simon, A.F., Benzer, S.,

Axel, R., and Anderson, D.J. (2004). A single population of olfactory sensory

neurons mediates an innate avoidance behaviour in Drosophila. Nature 431,

854–859.

Tian, L., Hires, S.A., Mao, T., Huber, D., Chiappe, M.E., Chalasani, S.H.,

Petreanu, L., Akerboom, J., McKinney, S.A., Schreiter, E.R., et al. (2009).

Imaging neural activity in worms, flies andmicewith improvedGCaMP calcium

indicators. Nat. Methods 6, 875–881.

Trigo, F.F., Corrie, J.E., and Ogden, D. (2009). Laser photolysis of caged com-

pounds at 405 nm: photochemical advantages, localisation, phototoxicity and

methods for calibration. J. Neurosci. Methods 180, 9–21.

van der Goes van Naters, W., and Carlson, J.R. (2007). Receptors and neurons

for fly odors in Drosophila. Curr. Biol. 17, 606–612.

Vidyasagar, T.R., Pei, X., and Volgushev, M. (1996). Multiple mechanisms un-

derlying the orientation selectivity of visual cortical neurones. Trends Neurosci.

19, 272–277.

Vinje, W.E., and Gallant, J.L. (2000). Sparse coding and decorrelation in pri-

mary visual cortex during natural vision. Science 287, 1273–1276.

Vosshall, L.B., and Stocker, R.F. (2007). Molecular architecture of smell and

taste in Drosophila. Annu. Rev. Neurosci. 30, 505–533.

Willhite, D.C., Nguyen, K.T., Masurkar, A.V., Greer, C.A., Shepherd, G.M., and

Chen, W.R. (2006). Viral tracing identifies distributed columnar organization in

the olfactory bulb. Proc. Natl. Acad. Sci. USA 103, 12592–12597.

Wilson, R.I. (2013). Early olfactory processing in Drosophila: mechanisms and

principles. Annu. Rev. Neurosci. 36, 217–241.

Wilson, R.I., and Laurent, G. (2005). Role of GABAergic inhibition in shaping

odor-evoked spatiotemporal patterns in the Drosophila antennal lobe.

J. Neurosci. 25, 9069–9079.

Wilson, R.I., Turner, G.C., and Laurent, G. (2004). Transformation of olfactory

representations in the Drosophila antennal lobe. Science 303, 366–370.

Wu, G.K., Arbuckle, R., Liu, B.H., Tao, H.W., and Zhang, L.I. (2008). Lateral

sharpening of cortical frequency tuning by approximately balanced inhibition.

Neuron 58, 132–143.

Xue,M., Atallah, B.V., and Scanziani, M. (2014). Equalizing excitation-inhibition

ratios across visual cortical neurons. Nature 511, 596–600.



Yaksi, E., and Wilson, R.I. (2010). Electrical coupling between olfactory

glomeruli. Neuron 67, 1034–1047.

Yao, C.A., Ignell, R., and Carlson, J.R. (2005). Chemosensory coding by

neurons in the coeloconic sensilla of the Drosophila antenna. J. Neurosci.

25, 8359–8367.
Yarali, A., Ehser, S., Hapil, F.Z., Huang, J., and Gerber, B. (2009). Odour

intensity learning in fruit flies. Proc. Biol. Sci. 276, 3413–3420.

Yoshimura, Y., and Callaway, E.M. (2005). Fine-scale specificity of cortical

networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8,

1552–1559.
Neuron 85, 573–589, February 4, 2015 ª2015 Elsevier Inc. 589


	Simultaneous Encoding of Odors by Channels with Diverse Sensitivity to Inhibition
	Introduction
	Results
	Input to a Single Glomerulus Recruits LN Activity in All Glomeruli
	Lateral Inhibition Is Target Specific
	Variation in GABA Release Does Not Explain Why Glomeruli Vary in Their Sensitivity to Inhibition
	Sensitivity to GABA Varies across Glomeruli
	Sensitivity to Inhibition Is Independent of Odor Tuning

	Discussion
	Odor-Invariant Recruitment of Global Lateral Inhibition
	Functional Implications of Broad Lateral Inhibition
	Target Specificity of Lateral Inhibition
	Functional Implications of Target Specificity

	Experimental Procedures
	Flies
	Odor Delivery
	Calcium Imaging of Odor-Evoked Activity
	Calcium Imaging of Optogenetically Evoked Activity
	Local Field Potential Recordings
	Immunohistochemistry
	Electrophysiology
	Optogenetics and Light Calibration
	GABA Uncaging
	Analysis

	Supplemental Information
	Acknowledgments
	References




