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Dopamine promotes head direction 
plasticity during orienting movements

Yvette E. Fisher1,2,3,4, Michael Marquis1,4, Isabel D’Alessandro1 & Rachel I. Wilson1 ✉

In neural networks that store information in their connection weights, there is a 
tradeoff between sensitivity and stability1,2. Connections must be plastic to 
incorporate new information, but if they are too plastic, stored information can be 
corrupted. A potential solution is to allow plasticity only during epochs when 
task-specific information is rich, on the basis of a ‘when-to-learn’ signal3. We reasoned 
that dopamine provides a when-to-learn signal that allows the brain’s spatial maps to 
update when new spatial information is available—that is, when an animal is moving. 
Here we show that the dopamine neurons innervating the Drosophila head direction 
network are specifically active when the fly turns to change its head direction. 
Moreover, their activity scales with moment-to-moment fluctuations in rotational 
speed. Pairing dopamine release with a visual cue persistently strengthens the cue’s 
influence on head direction cells. Conversely, inhibiting these dopamine neurons 
decreases the influence of the cue. This mechanism should accelerate learning during 
moments when orienting movements are providing a rich stream of head direction 
information, allowing learning rates to be low at other times to protect stored 
information. Our results show how spatial learning in the brain can be compressed 
into discrete epochs in which high learning rates are matched to high rates of 
information intake.

In artificial neural networks, learning is generally restricted to specific 
epochs when the network is presented with a rich source of training 
data; then, connections are frozen outside these epochs, to prevent 
the loss of stored information4. By contrast, in biological neural net-
works, learning is often assumed to be continuous, and not restricted 
to specific epochs5. However, during biological reward learning, dopa-
mine neurons are selectively activated by reward prediction errors, 
and dopamine release promotes reward learning in response to these 
errors6. Thus, dopamine compresses reward learning into specific 
epochs when task-specific information is rich. However, it is not clear 
whether a similar when-to-learn signal also governs other forms of 
learning, such as unsupervised spatial learning.

During spatial learning, task-relevant information comes from move-
ment through space, which could provide a useful when-to-learn signal. 
Indeed, some dopamine neurons are time-locked to movement7–14, and 
even to specific kinematic variables such as forward acceleration of the 
body, or rotational velocity of the head15–18. Movement-locked activity 
has also been noted in certain dopamine neurons in the Drosophila 
melanogaster brain19–23. These include ExR2 neurons22, which provide 
dopaminergic input24–26 to head direction cells27, also known as EPG 
neurons (Fig. 1a and Extended Data Fig. 1). EPG neurons can rapidly learn 
new visual cue configurations when the fly enters a new environment, 
probably through Hebbian plasticity at the synapses from visual ER 
neurons onto EPG neurons28,29; however, this type of spatial learning 
should be allowed only when the fly is actively changing its head direc-
tion, to avoid creating biases in the head direction map when the fly’s 

gaze is stationary—in essence, to avoid ‘over-learning’ any particular 
snapshot of the visual scene29. We wondered whether ExR2 neurons 
are selectively active when the fly is changing its head direction and, 
if so, whether these dopamine neurons promote associations between 
visual cues and head directions.

Dopamine neurons that track rotations
To investigate this hypothesis, we carried out two-photon calcium imag-
ing of ExR2 axons as flies walked on a spherical treadmill in darkness 
(Fig. 1b), using a selective transgenic line to drive expression of jGCaMP7f 
in these cells. There are four ExR2 neurons per brain, and we imaged all 
their axons simultaneously. We found that ExR2 neurons are most active 
when a fly turns, thereby changing its fictive head direction (Fig. 1c). On 
a moment-to-moment basis, there is a nearly linear relationship between 
ExR2 activity and the fly’s rotational speed (Fig. 1d). Linear regression 
shows that rotational speed explains much of the variance in ExR2 activ-
ity (Fig. 1e and Extended Data Fig. 2). These rotational speed signals in 
ExR2 neurons probably reflect internal copies of motor commands 
and/or proprioceptive feedback from the legs. These signals may arise 
from the synaptic inputs to ExR2 neurons in the lateral accessory lobe, a 
brain region that issues descending steering commands25. Specifically, 
rightward steering commands are driven by activity in the right lateral 
accessory lobe, and vice versa22,30. We found the same lateralization 
of activity in ExR2, and the summed output of all four ExR2 neurons 
scales with rotational speed in either direction (Extended Data Fig. 3).
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Rotational speed can also be signalled by rotational optic flow31, and 
indeed we found that ExR2 neurons are robustly activated by wide-
field rotational optic flow, even when flies are standing still (Fig. 1f). 
Thus, ExR2 neurons combine multiple sources of information (both 
non-visual and visual) to estimate rotational speed. ExR2 neurons show 
only a small response to the movement of an object within the visual 
scene, consistent with the fact that a moving object generates a rela-
tively small amount of optic flow, compared with a widefield rotation 
of the entire scene (Extended Data Fig. 4).

A model with an adaptive learning rate
We then adapted a published computational model29 to explore the 
consequence of ExR2 activity for spatial learning. The input to the 
model was a temporal sequence of visual cue positions and associ-
ated rotational velocities. We took this sequence directly from behav-
ioural experiments in which we allowed head-fixed walking flies to 
walk in a virtual reality environment with a visual cue; when the fly 

attempted to turn, this caused the visual cue to rotate around its 
head in the expected direction (Fig. 1g). In the model, this recorded 
sequence of virtual gaze directions was used to drive the visual ER 
neurons that project to head direction cells32. Model ER neuron recep-
tive fields evenly tiled the space of head directions, so that activity 
moved across the ER array as the fly turned. In the model, each ER axon 
connected to all head direction cells (EPG neurons), and ER-to-EPG 
synaptic weights were plastic. To ensure a stable bump of EPG activity 
(attractor dynamics), model EPG neurons were linked by reciprocal 
short-range excitation and global inhibition33. At the outset of each 
simulation, ER-to-EPG weights were initialized randomly and then 
allowed to evolve over time, following a Hebbian bidirectional learn-
ing rule, until they reached a stable equilibrium (Fig. 1h,i). Consistent 
with the findings of previous work29, our observations showed that 
learning in this network produces an irregular pattern of ER-to-EPG 
weights (Fig. 1i). This irregularity arises from the fact that the fly often 
orients in a fixed direction for long periods, and so over-learns the cue 
location that is associated with that direction.
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Fig. 1 | ExR2 dopamine neurons are correlated with rotational speed.  
a, Schematic of the head direction map. b, Imaging jGCaMP7f in ExR2 neurons 
while measuring rotational and forward walking speed. c, Mean ExR2 ΔF/F 
versus rotational speed (one line per fly, n = 13 flies). Grey shading indicates 
transitions between resting and moving; outside this range, ΔF/F and 
rotational speed are linearly related. d, Mean ExR2 ΔF/F binned by rotational 
and forward speed, aggregated over 13 flies and averaged over time points. 
Grey bins are empty. e, Variance explained (adjusted R2) for linear regression 
models that use speed to predict ExR2 activity. Each pair of dots is one fly 
(n = 13). Models were fitted separately for each fly. Rotational speed alone 
produced a high R2; adding forward speed produced a small additional increase 
(***P = 5.3 × 10−5, two-sided paired t-test). f, ExR2 responses to optic flow.  
A stationary vertical grating begins to rotate, and the onset of optic flow drives 

a sustained increase in ExR2 activity (mean ± s.e.m. across flies; ΔF/F is 
significantly different from zero with P = 0.0012, two-sided one-sample t-test, 
n = 13 flies). Here we analysed only trials when the fly was standing still.  
g, Example data used as model input. Flies walked in a virtual environment with 
a visual head direction cue. h, Schematic ER-to-EPG connectivity. Adjacent ER 
neurons in the schematic have adjacent receptive fields in azimuthal space. 
Connection weights are denoted by circle sizes. Weights are initialized 
randomly, and then evolve through Hebbian plasticity. i, Weights from a typical 
model run. j, Mean circular correlation between the population vector average 
of ER output weights and EPG input weights; mean (n = 117 simulations trained 
on shuffled data) ± 95% confidence interval. At the end of the simulation, the 
correlation is higher with the adaptive learning rate (P = 6.2 × 10−21, two-sided 
Wilcoxon sign rank test).
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Then we added dopamine neurons to the model so that the weight 
change at each time step was scaled by dopamine neuron activity, 
which was taken as proportional to the fly’s rotational speed, as per 
our ExR2 imaging data. This adaptive learning rate produces a more 
regular pattern of synaptic weights (Fig. 1i,j). This occurs because dopa-
mine neurons are active only when the fly is actively changing its head 

direction, and so if dopamine regulates the learning rate, learning can 
occur only during the epochs in which there is a rapid sampling of gaze 
directions. Finally, even after the network develops a regular pattern 
of synaptic weights, Hebbian plasticity and dopamine neurons are still 
useful, because they combat the ongoing effect of synaptic weight 
noise (Extended Data Fig. 5). These model results support a previous 
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Fig. 2 | ExR2 dopamine strengthens the association between EPG neurons 
and a visual cue. a, A 30-s pulse of ATP (5 mM) excites ExR2 neurons expressing 
P2X2 receptors (n = 5 cells). The fly is not standing on a spherical treadmill in 
this figure or in Fig. 3. b, An example EPG neuron responding to a rotating cue. 
For each cue cycle, we measured the neuron’s preferred cue position and its 
response amplitude (maximum − minimum membrane potential). A position of 
0° means the cue is in front of the fly. Extended Data Figure 6a shows another 
example. c, Preferred cue position over time for six EPG neurons. Each point is 
one stimulus cycle. The green shading shows the pulse of ATP (5 mM) or 
dopamine (200 µM). In controls (cells 1 and 2), ExR2 neurons did not express 
P2X2 receptors. With ExR2 activation (cells 3 and 4), the cell’s preferred cue 
position became more consistent, and it sometimes shifted. Dopamine 
produced similar changes (cells 5 and 6). s.d., circular standard deviation.  

d, Variability of preferred cue position, before and after ExR2 activation (n = 11) 
or dopamine (n = 12) versus ATP treatment in controls in which ExR2 neurons 
do not express P2X2 (controls, n = 10). The fine lines represent individual EPG 
neurons; the thick lines represent means. The preferred cue position becomes 
less variable after ExR2 activation (**P = 0.0049). Dopamine produces a similar 
trend, although falling short of significance (not significant (NS), P = 0.052). 
ATP has no effect in controls (NS, P = 0.77, two-sided Wilcoxon sign rank tests). 
The values are measured over the windows shown in c. e, Amplitude of the 
response to the visual cue, normalized to each cell’s baseline, averaged over 
cells (±s.e.m.); n values as in d. f, The normalized response amplitude increases 
after ExR2 activation (**P = 0.0068) or dopamine treatment (**P = 0.0024) but 
not in controls (NS, P = 1, two-sided Wilcoxon sign rank test). The dots 
represent single cells; the lines represent means; n values as in d.
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theoretical framework that assumed a slightly different formulation 
of the adaptive learning rate29.

Pairing dopamine with a direction cue
Next, we experimentally tested the effect of stimulating dopamine 
release. We reasoned that if dopamine increases the learning rate at 
ER-to-EPG synapses, then pairing dopamine with a visual cue should 
increase the cue’s influence on EPG neurons. To stimulate dopamine 
release, we expressed ATP-gated ion channels (P2X2 receptors) in ExR2 
neurons (Fig. 2a). We used ExR2 electrophysiological recordings to ver-
ify that a 30-s bath application of ATP produced a transient depolariza-
tion and spike rate increase in these neurons (Fig. 2a). Then, in separate 
experiments, we used electrophysiological recordings to continu-
ously monitor the preferred cue positions of individual EPG neurons 

as we rotated a visual cue around the fly at a constant velocity (Fig. 2b).  
We found that ExR2 activation typically caused the cell’s visual tuning 
to become more consistent, as indicated by a persistent decrease in the 
cycle-to-cycle jitter of the neuron’s preferred cue position (Fig. 2b–d). 
In a small subset of cells, there was also an abrupt remapping of the 
preferred cue position (Fig. 2b,c, Methods and Extended Data Figs. 6 
and 7). We saw this visual cue remapping in cells in which the visual cue 
preferences were already consistent before ExR2 activation (Fig. 1b and 
Extended Data Fig. 7). These changes generally persisted for as long as 
we held the recording (10–15 min). At the same time, ExR2 activation 
also caused a large increase in the amplitude of the EPG neuron’s visual 
response (Fig. 2b,e,f); this increase typically persisted for several min-
utes, but it was not as long-lasting as the change in tuning consistency, 
arguing that the measured change in tuning consistency was not simply 
a consequence of larger visual responses. In control experiments in 
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which we applied ATP but ExR2 neurons did not express P2X2 recep-
tors, we did not observe any of these effects (Fig. 2c–f). Together, these 
data indicate that a transient burst of ExR2 dopamine neuron activity 
can persistently increase the consistency of visual cue responses in 
head direction neurons, while also causing a remapping of the pre-
ferred cue position in a small subset of cells. When we activated ExR2 
neurons optogenetically, rather than chemogenetically, we found 
similar results (Extended Data Fig. 8). Finally, we found that a 30-s bath 
application of dopamine mimicked some of the effects of stimulating 
ExR2 neurons (Fig. 2c–f and Extended Data Fig. 7), although its effects 
were less consistent, possibly because bath application does not match 
physiological dopamine concentrations or release kinetics.

The arthropod head direction system is laid out as a circular topo-
graphic map27,34, unlike the mammalian head direction system. In both 
cases, however, the assignment of visual cues to head direction neu-
rons is flexible and seemingly arbitrary. We wondered how dopamine 
reorganizes this topographic map. To answer this question, we car-
ried out two-photon imaging of jGCaMP7f in the entire EPG ensemble 
(Fig. 3a). As before, we rotated a visual cue at a constant speed while 
transiently stimulating ExR2 dopamine neurons. At the outset of a typi-
cal experiment, we observed a discrete bump of activity that rotated 
around the topographic map of head direction in sync with the visual 
cue (Fig. 3b, top). Often, however, the bump did not track the cue 
accurately, probably because the imposed rotation of the cue conflicts 
with the fly’s internal self-motion signals (that is, its motor commands 
and proprioceptive feedback). Transiently stimulating ExR2 dopamine 
neurons persistently increased the accuracy of visual cue tracking 
in the EPG ensemble (Fig. 3b). We quantified this by estimating the 

mutual information that the EPG bump position conveyed about the 
position of the visual cue; mutual information increased after ExR2 
stimulation and remained high for the rest of the experiment (>10 min; 
Fig. 3c,d). This result indicates that a burst of dopamine neuron activ-
ity can persistently strengthen the influence of a visual cue on head 
direction neurons. We also observed that ExR2 activation increased the 
bump amplitude, although this effect was more transient (Fig. 3e,f), 
mirroring the relatively transient increase we observed in single-cell 
visual response amplitude (Fig. 2e,f). None of these effects occurred in 
control experiments in which ATP was washed into the bath but ExR2 
neurons did not express P2X2 receptors (Fig. 3c–f).

Notably, we found that ExR2 stimulation did not rotate the coor-
dinate frame of the entire head direction map: the overall ‘offset’ of 
the EPG bump relative to the visual cue was equally stable over time 
in experimental versus genetic control flies (Fig. 3g). Rather, the map 
simply became more self-consistent, so that there was now a more 
orderly one-to-one correspondence between cue positions and bump 
positions. To obtain a more orderly map, it is logical that some neurons 
must shift their preferences, and so it makes sense that we observed 
some instances of clear cue-preference shifts in our single-cell record-
ings (Fig. 2b,c).

Next, we asked whether these changes require dopamine to be paired 
with the visual cue. We repeated our experimental protocol, but now we 
turned off the visual cue to stimulate ExR2 neurons in darkness (Fig. 3b, 
bottom). At the time when ExR2 firing rates should have returned to 
baseline, we turned the visual cue back on and retested its effect on 
the EPG bump position. Here we found no increase in the mutual infor-
mation between the bump position and the cue position (Fig. 3c,d).  
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body. c, Estimate of the mutual information between the cue position and the 
bump position in the test period. Dots represent flies; lines represent means 
(n = 21 with Kir2.1 expression; n = 20 control here and in e); examples in b are 

labelled. Mutual information is lower in the Kir2.1 flies (*P = 0.027, two-sided 
two-sample t-test). d, EPG bump amplitude versus the fly’s rotational speed for 
both genotypes; data are binned by speed and averaged within a fly before 
averaging across flies (±s.e.m. across flies). Only speeds ≤100° s−1 are included. 
Bump amplitude is z-scored within each fly. The schematic shows higher bump 
amplitude with higher rotational speed. e, Correlation between bump 
amplitude and rotational speed throughout the experiment. Dots represent 
flies; lines represent means. In flies in which ExR2 neurons express Kir2.1, this 
correlation is lower (***P = 3.5 × 10−6, two-sided two-sample t-test with Fisher 
transformation).
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In darkness, we did observe a transient increase in EPG bump amplitude, 
but this effect did not outlast the time when ExR2 firing rate would 
be elevated (Fig. 3e,f). Thus, dopamine must be paired with the cue; 
otherwise, it does not strengthen the subsequent influence of the cue.

Decreasing dopamine release
Finally, we asked whether decreasing dopamine release can interfere 
with cue associations. We expressed an inwardly rectifying potassium 
channel (Kir2.1) in ExR2 neurons to hyperpolarize these cells, whereas 
in control flies, we omitted the ExR2 Gal4 line, so that Kir2.1 was not 
expressed. In both genotypes, jGCaMP7f was expressed in EPG neurons 
under LexA control. In the first block of each experiment, we allowed 
the fly to walk in a virtual reality environment containing a visual cue 
that rotated around the fly whenever the fly turned on the spherical 
treadmill (Fig. 4a). This closed-loop ‘training’ block should allow Heb-
bian strengthening of the association between the cue and the bump, 
and normal ExR2 activity should potentiate cue–bump associations. 
Subsequently, in the second block of each experiment, we tested the 
cue’s influence on the bump: we rotated the cue around the fly at a 
constant speed, decoupled from the fly’s walking. During this ‘test’ 
block, we would predict that the influence of the cue will be lower if 
ExR2 dopamine release has been suppressed during the training period.

Our results confirmed this prediction. The influence of the visual 
cue during the test block was indeed weaker in ExR2-hyperpolarized 
flies versus control flies (Fig. 4b), as evidenced by the significantly 
lower mutual information between the cue position and the bump 
position (Fig. 4c). This finding implies that ExR2 activity is required 
for the normal formation of a visual cue association in EPG neurons. 
Notably, ExR2 hyperpolarization had no effects on the fly’s walking 
behaviour, and it did not impair the bump’s ability to track the fly’s 
internal self-motion signals (Extended Data Fig. 9).

Recall that ExR2 activity scales with the fly’s rotational speed 
(Fig. 1c,d), and ExR2 activity transiently increases EPG bump amplitude 
(Figs. 2f and 3f). We found that bump amplitude is also correlated with 
the fly’s rotational speed (Fig. 4d), confirming the findings of previous 
reports27,35–37. Notably, we found that hyperpolarizing ExR2 neurons 
almost completely eliminated the correlation between bump amplitude 
and rotational speed (Fig. 4d,e). Thus, speed-evoked bump amplitude 
changes are at least partly due to dopamine release.

Discussion
In summary, we find that ExR2 dopamine neuron activity promotes 
associations between sensory cues and head direction cells. These 
associations have been shown to reorganize when the fly enters a new 
environment with a new cue configuration, probably through Heb-
bian plasticity at ER-to-EPG synapses28,29. In the Drosophila mushroom 
body, dopamine can promote both synaptic potentiation and synaptic 
depression by acting on different dopamine receptor types20,38,39. ER 
neurons express multiple dopamine receptor types24,26,40,41, as do EPG 
neurons42. ER-to-EPG synapses are in close proximity to dopamine 
release sites (Extended Data Fig. 1). In the future, it will be interesting 
to determine the roles of different dopamine receptors in ER-to-EPG 
synaptic plasticity. Notably, a study published while our work was in 
revision26 reported that multiple dopamine receptors in ER neurons 
are required for a fly to learn to steer away from a direction associated 
with punishment; that study also showed that hyperpolarizing ExR2 
neurons blocks this form of learning. Our results extend this work by 
demonstrating that flies do not form normal associations between 
visual cues and head directions when ExR2 neurons are hyperpolar-
ized. These flies have an impairment in mapping visual cue locations 
onto their internal map of head direction, and so it is logical that they 
would be unable to use visual cues to steer in an arbitrary (remembered) 
direction to avoid a predicted punishment.

Notably, ExR2 dopamine neurons are primarily active when the fly is 
rotating. This is probably partly due to the synaptic inputs to ExR2 neu-
rons in the lateral accessory lobe, a brain region where many descend-
ing neurons are located43, including descending neurons involved in 
steering30. Moreover, ExR2 neurons also receive inputs from PEN_a 
neurons that track rotational movements35,36. Rotational movements 
have a special relevance for the head direction system: they coincide 
with internal cues (motor commands and proprioceptive signals) that 
can be compared with the displacements of external head direction 
cues, including visual cues, sky-wide visual patterns34 and the direction 
of the prevailing wind44–46. As such, rotational movements provide a 
rich dataset for statistical learning in the head direction system. Our 
results argue that dopamine serves to compress learning into these 
data-rich epochs. Notably, certain dopamine neurons in the mam-
malian brain are time-locked to specific kinematic features of motor 
performance15,16,18. It is tempting to speculate that these mammalian 
dopamine neurons serve a similar function, by compressing synaptic 
plasticity into the time intervals when task-specific movements are 
generating rich datasets for learning.

It is worth asking why the system does not learn continuously. One 
of the behavioural functions of the head direction system in Drosoph-
ila47,48 and other arthropods49,50 is to enforce a straight-line path while 
navigating towards a distant goal destination. However, straight-line 
locomotion will stabilize the visual world on the retina, and so if the 
system were learning continuously, then the brain’s map of head 
direction would become progressively skewed, as the current view is 
over-learned. Thus, there is an inherent tension between goal-directed 
action, which limits the range of experiences, and statistical learning, 
which requires broad sampling of experiences. One solution to this 
problem is to pre-memorize a snapshot of the world before starting 
to pursue a goal—as dung beetles do when they rotate in place before 
embarking on a trip51. Then, during goal-directed navigation, the brain 
should compress any further orientation learning into moments of 
active reorienting behaviour. This is reminiscent of machine learning 
protocols, in which learning and performance are typically partitioned 
into separate epochs4.

In machine learning, it is conventional to draw a distinction between 
reinforcement learning (learning through trial and error to choose 
actions in a manner that maximizes reward) and unsupervised learn-
ing (inferring the structure of a dataset without the benefit of rewards 
or labels). In the brain, dopamine has a clear role in reinforcement 
learning6. By contrast, dopamine’s potential role in unsupervised 
learning is less well understood. Spatial learning is a prime example 
of unsupervised learning: here, the brain’s task is simply to infer the 
structure of the environment through exploration. Our results reveal 
a link between dopamine and spatial learning, highlighting the need 
for a ‘supervisory’ element that controls the rate of the (otherwise) 
unsupervised inference.
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Methods

Cell types and synonyms
We have adopted the cell type names used in the recent comprehensive 
anatomical survey of the central complex25. ExR2 neurons are the dopa-
mine neurons of the PPM3 cluster that innervate the ellipsoid body52 
(that is, PPM3-EB neurons53). EPG neurons have also been termed E-PG 
or PBG1-8.b-EBw.s-D/Vgall.b neurons54,55, EB-IDFP D/VSB-PB neurons56 
or compass neurons36. ER neurons57 have been termed ring neurons or R 
neurons58, as well as LTR-EB neurons59. PEN_a neurons are also referred 
to as P-EN1 (ref. 35) or PEN1 (ref. 57).

Fly husbandry and genotypes
Unless otherwise stated, flies were raised on standard cornmeal–molas-
ses food (New Brown 19L, Archon Scientific) in an incubator on a 12/12-h 
light/dark cycle at 25 °C with humidity about 50–70%. All experiments 
used flies with at least one wild-type copy of the white gene, and many 
experiments used flies with two wild-type copies of the white gene (as 
detailed below). The experimenters were not blind to genotype. In 
Fig. 2, flies of the appropriate genotype and age were selected randomly 
and then alternately assigned to the ‘ExR2 activation’ condition or the 
‘ExR2 activation, no visual cue’ condition, so that the two conditions 
were interleaved in the data acquisition sequence; these assignments 
were made prior to the beginning of each experiment.

The genotypes of the fly stocks used in Fig.  1 and Extended 
Data Figs.  2–4 are as follows: +/+ or +/w*; P{75B10-LexA}attP40/
P{R75B10-LexA}attP40; PBac{13×LexAop-IVS-jGCaMP7f }VK00005/
PBac{13×LexAop-IVS-jGCaMP7f }VK00005.

The genotype of the fly stock used in Fig.  2a is as follows: 
+/+; P{R38A11-LexA}attP40/P{13×LexAop2-mCD8::GFP}attP40; 
P{13×LexAop2-mCD8::GFP}attP2/P{LexAop-P2X2.Y}3.

The genotypes of the fly stocks used in Fig. 2b–f and Extended 
Data Figs. 6 and 7 are as follows: for control, +/+ or +/w*; R38A11-LexA/
UAS-mCD8::GFP; R60D05-Gal4/+; for ExR2 activation, +/+ or +/w*; 
R38A11-LexA/UAS-mCD8::GFP; LexAop-P2X2.Y/R60D05-Gal4; for 
dopamine, +/+; UAS-mCD8::GFP/UAS-mCD8::GFP; R60D05-Gal4/
R60D05-Gal4 (n = 9) or +/+ or +/w*; R38A11-LexA/UAS-mCD8::GFP; 
R60D05-Gal4/+ (n = 3).

The genotypes of the fly stocks used in Extended Data Fig. 8 are 
as follows: for no Chrimson control, +/+; P{20XUAS-IVS-mCD8::GFP}
attP40, PBac{13×LexAop2-IVS-Syn21-Chrimson::tdT-3.1-p10} su(Hw)
attP5/+; P{R60D05-Gal4}attP2/+; for ExR2 activation and ‘no cue’ 
conditions, +/+; P{20XUAS-IVS-mCD8::GFP}attP40, PBac{13×LexAo
p2-IVS-Syn21-Chrimson::tdT-3.1-p10} su(Hw)attP5/P{R38All-LexA}attP40; 
P{R60D05-Gal4}attP2/+.

The genotypes of the fly stocks used in Fig. 3 are as follows: for 
control, +/+ or +/w*; P{R38A11-LexA}attP40/P{20XUAS-IVS-jGCaMP7f }
su(Hw)attP5; P{R60D05-Gal4}attP2/+; for ExR2 activation, +/+ or 
+/w*; P{R38A11-LexA}attP40/P{20XUAS-IVS-jGCaMP7f }su(Hw)attP5; 
P{LexAop-P2X2.Y}3/P{R60D05-Gal4}attP2.

The genotypes of the fly stocks used in Fig. 4 and Extended Data 
Fig. 9 are as follows: for control, w[1118], P{13×LexAop-IVS-jGCaMP7f }
su(Hw)attP8/+; P{R60D05-LexA}attP40/+; P{UAS-Hsap\KCNJ2.eGFP}7/+; 
for Kir2.1, w[1118], P{13×LexAop-IVS-jGCaMP7f }su(Hw)attP8/+; 
P{R60D05-LexA}attP40/+; P{UAS-Hsap\KCNJ2.eGFP}7/P{R75B10-Gal4}
attP2.

Characterization and description of driver line expression
We used P{R60D05-Gal4}attP2 or P{R60D05-LexA}attP40 to target 
EPG neurons for calcium imaging or electrophysiology recording as 
established in previous studies27,28.

We used P{R38A11-LexA}attP40 to drive expression of mCD8::GFP 
and P2X2 receptors in ExR2 neurons. Immunostaining of these brains 
showed that GFP expression was isolated to four ExR2 neurons, a bilat-
eral pair of unidentified ascending neurons that arborize within the 

antennal lobe, and 1–2 pars intercerebralis neurons (data not shown). 
The database of the FlyLight Project Team at Janelia Research Campus 
(https://flweb.janelia.org/cgi-bin/flew.cgi) showed a similar expression 
pattern for this line.

We used P{R75B10-LexA}attP40 to carry out calcium imaging from 
ExR2 neurons because R38A11-LexA produces relatively weak jGCaMP7f 
expression, and we obtained a better signal-to-noise ratio in two-photon 
imaging when we used R75B10-LexA to drive jGCaMP7f expression. 
Images from the FlyLight database (https://flweb.janelia.org/cgi-bin/
flew.cgi) show that this line has strong expression in a subset of dopa-
mine neurons from the PPM3 cluster, namely ExR2 FB4M and/or FB4L. 
This line also has weaker expression in a lobula cell type, the SEZ, and the 
SMP. During calcium imaging, the only detectable jGCaMP7f expression 
in the ellipsoid body and bulb regions was from the ExR2 neurons. We 
observed that jGCaMP7f signals were highly correlated in the ellipsoid 
body and bulb, as we would expect if these signals arose from ExR2 
neurons exclusively.

We used P{R75B10-Gal4}attP2 to drive expression of Kir2.1 in ExR2 
neurons. Images from the FlyLight database (https://flweb.janelia.
org/cgi-bin/flew.cgi) show that this line has strong expression in ExR2 
dopamine neurons in the ellipsoid body, as well as some labelling in a 
middle layer of the fan-shaped body. This line also has weaker expres-
sion in a lobula cell type, the SEZ, and the SMP. Immunostaining of GFP 
protein in flies with the genotype w[1118], P{13×LexAop-IVS-jGCaMP7f }
su(Hw)attP8 / +; P{R60D05-LexA}attP40 / +; P{UAS-Hsap\KCNJ2.EGFP}7 
/ P{R75B10-Gal4}attP2 revealed the clearest Kir2.1::eGFP expression in 
the ExR2 neuron and middle fan-shaped body layers.

Origins of transgenic stocks
P{20XUAS-IVS-mCD8::GFP}attP40 and PBac{13×LexAop2-IVS-Syn2
1-Chrimson::tdT-3.1-p10}su(Hw)attP5 were gifts from B. Pfeiffer and G. 
Rubin and have previously been published60,61. Rubin Gal4 and LexA 
lines (P{R60D05-Gal4}attP2, P{R38A11-LexA}attP40, P{R75B10-LexA}
attP40 and P{R75B10-Gal4}attP2) were obtained from the Bloomington 
Drosophila Stock Center (BDSC); the general methods for constructing 
these lines have previously been published60,62,63. Lines for expressing 
jGCaMP7f under LexAop or UAS control (PBac{13×LexAop-IVS-jGCaMP7f }
VK00005 and P{20XUAS-IVS-jGCaMP7f }su(Hw)attP5) were obtained 
from the BDSC and have previously been published37. Lines for express-
ing GFP under LexAop control (P{13×LexAop2-mCD8::GFP}attP40 and 
P{13×LexAop2-mCD8::GFP}attP2) were obtained from the BDSC and have 
previously been published60. The line used for expressing P2X2 under 
LexAop control (P{LexAop-P2X2.Y}3) was obtained from the BDSC and 
has previously been published64. The line for expressing Kir2.1::eGFP 
under UAS control (P{UAS-Hsap\KCNJ2.eGFP}7) was obtained from the 
BDSC and has previously been published65.

Fly preparation and dissection
Newly eclosed female Drosophila melanogaster were anaesthetized on 
ice and were collected about 3–10 h (electrophysiology) or 1–4 days 
(imaging) before the experiment. For the ExR2 imaging experiments 
in Fig. 1, we deprived the flies of food (but not water) and kept them in 
isolation for approximately 24 h before the experiment to promote 
walking behaviour.

For electrophysiology experiments, the fly holder consisted of flat 
titanium foil secured within an acrylic platform. The fly’s head was 
pitched forwards so that the posterior surface was parallel to the foil 
and most of each eye was under the foil. For imaging experiments, a 
holder was custom designed using CAD software (OnShape) and cre-
ated in-house using a three-dimensional (3D) printer (Form 2 with Grey 
Pro and Rigid resins, Formlabs) to expose a larger surface area of the 
fly’s eye below the holder, and the fly’s head was pitched only slightly 
forwards (<30°).

The fly was secured in the holder using ultraviolet-curable adhe-
sive (Loctite AA 3972) cured by a brief (<1 s) pulse of ultraviolet light 
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(LED-200, Electro-Lite Co.). After the dorsal portion of the head (above 
the holder surface) was covered in saline solution, a hole was cut in the 
head capsule and trachea were removed to expose the posterior sur-
face of the brain. To reduce brain movement, muscle 16 and proboscis 
muscles were clipped with forceps. For electrophysiology, an aperture 
was made in the perineural sheath by pulling gently with fine forceps 
or by using suction from a patch pipette containing external solution.

The external saline solution contained (in mM): 103 NaCl, 3 KCl, 5 
N-tris(hydroxymethyl) methyl-2-aminoethane-sulfonic acid, 8 treha-
lose, 10 glucose, 26 NaHCO3, 1 NaH2PO4, 1.5 CaCl2 and 4 MgCl2, with 
osmolarity adjusted to 270–273 mOsm. External solution was bubbled 
with 95% O2 and 5% CO2 and reached a final pH of 7.3. The external saline 
solution was continuously perfused over the brain during experiments.

Patch-clamp recordings
Patch pipettes were made from borosilicate glass (Sutter, 1.5 mm 
o.d., 86 mm i.d.) using a Sutter P-97 puller. Pipettes were fire pol-
ished down after pulling66 using a microforge (ALA Scientific Instru-
ments) to a final resistance of 8–15 MΩ. The internal pipette solution 
contained (in mM): 140 potassium aspartate, 10 4-(2-hydroxyethyl)-
1-piperazineethanesulfonic acid, 4 MgATP, 0.5 Na3GTP, 1 ethylene glycol 
tetraacetic acid, 1 KCl and 13 biocytin hydrazide. The pH was 7.3, and 
the osmolarity was adjusted to about 268 mOsm. For experiments that 
did not require rapid pharmacology, the saline solution was perfused 
at about 2 ml min−1; higher flow rates were used for rapid drug delivery 
(see below). Recordings were carried out at room temperature.

To visualize the brain, we used a custom-modified Olympus BX51WI 
microscope with a 40× water-immersion objective. We removed the 
light source and condenser below the preparation, and we instead 
illuminated the brain with far-red light delivered by a fibre-coupled 
light-emitting diode (LED; 740 nm, M740F2, Thorlabs) through a ferrule 
patch cable (200 µm Core, Thorlabs) plugged into a fibre optic can-
nula (1.25-mm SS ferrule 200-µm core, 0.22 NA, Thorlabs) glued to the 
recording platform, with the tip of the cannula about 1 cm behind the fly. 
GFP fluorescence was visualized using a mercury arc lamp (U-LH100HG, 
Olympus) with an eGFP-long-pass filter (U-N41012, Chroma).

Somatic recordings were obtained in current-clamp mode using 
an Axopatch 200B amplifier and a CV-203BU headstage (Molecular 
Devices). Voltage signals were low-pass filtered at 5 kHz before digitiza-
tion and then acquired with a NiDAQ PCI-6251 (National Instruments) 
at 20 kHz. To counteract the depolarizing leak current caused by the 
finite resistance of the patch electrode seal67, we applied a constant 
hyperpolarizing current throughout the experiment that lowered the 
somatic membrane potential by about 5 mV. For all electrophysiological 
recordings, liquid junction potential correction was carried out post 
hoc by subtracting 13 mV from recorded voltages67.

Two-photon calcium imaging
Imaging experiments were carried out as previously described28 using 
a two-photon microscope with a movable stage (Thorlabs Bergamo II) 
and a fast piezoelectric objective scanner (Physik Instrumente P725) 
for volumetric imaging. We used a Chameleon Vision-S Ti-sapphire 
femtosecond laser tuned to 940 nm for two-photon excitation. Images 
were collected using a 20× 0.95-NA objective (Olympus). Emission 
fluorescence was filtered with a 525-nm bandpass filter (Thorlabs) and 
collected using a GaAsP photomultiplier tube (Hamamatsu).

For EPG neurons, the imaging region was centred on the protocere-
bral bridge, where EPG axons terminate. The imaging view was 256 × 128 
pixels, and 8–12 slices deep in the z axis (4-6 µm per slice), resulting 
in a 6–9 Hz volumetric scanning rate. For ExR2 neurons, the imaging 
region was centred on the bulb and ellipsoid body. The imaging view 
was 256 × 128 pixels, and 12 slices deep in the z axis (6-8 µm per slice), 
resulting in a 6–7 Hz volumetric scanning rate.

Volumetric z-scanning signals from the piezoelectric objective scan-
ner were acquired simultaneously with analog output signals from the 

visual panorama and/or analog outputs from FicTrac 2.1 through a 
NiDAQ PCI-6341 at 40 kHz. Data were acquired using ScanImage 2018 
(Vidrio Technologies) with National Instruments hardware from Vidrio 
(NI PXIe-6341).

Measuring locomotor behaviour
For the experiments in Figs. 1 and 4, the fly stood on a spherical tread-
mill, which was a 9-mm-diameter ball made of white foam (FR-4615, 
General Plastics) painted with black shapes. The ball floated above 
a 3D printed plenum made of clear acrylic (Autotiv). Medical-grade 
breathing air flowed into the base of the plenum and flowed out into 
a hemispherical depression that cradled the ball to allow it to rotate 
freely. The ball was illuminated from below by two round boards of 36 
IR red LED lamps (SODIAL). The movement of the ball was tracked at 
about 60 Hz using a video camera (CM-3-U3-13S2M-CS, FLIR) fitted 
with a Tamron 23FM08L 8-mm 1:1.4 macro zoom lens. Machine vision 
software (FicTrac 2.1) was used to convert the image of the ball to a run-
ning estimate of the ball’s position in all three axes of rotation68. The 
fly’s rotational velocity was inferred from the yaw velocity of the ball. 
The fly’s forward velocity was inferred from the pitch velocity of the 
ball. The fly’s fictive heading direction (head direction) was inferred 
from the temporal integral of the fly’s rotational velocity.

Pharmacology
For pharmacology experiments, external saline solution was perfused 
quickly using a Watson Marlow Pump (120U) set at 60 r.p.m. (about 
5 ml min−1). At the start of a treatment trial, the intake tube was moved 
for exactly 30 s (electrophysiology) or 60 s (imaging) from normal 
saline solution into saline containing dopamine (200 µM) or ATP 
(5 mM). On each rig, we carried out measurements of the time it takes 
a new solution to flow through the tubing and reach the recording 
chamber. For electrophysiology, we validated this tubing delay time 
estimate by placing a recording electrode in the bath in voltage-clamp 
mode and then perfusing in external solution with a much higher salt 
content (>1 M NaCl) in the exact same manner that ATP or dopamine 
solutions were normally delivered. The first deviation in current signal 
measured by the electrode was used to estimate the entry of the new 
solution. For data display, measurements are plotted relative to the 
earliest time when the drug (ATP or dopamine) entered the recording 
chamber (t = 0).

We prepared the ATP solution (5 mM in bubbled saline) immediately 
before application from a frozen stock of 500 mM ATP in water. We 
prepared the dopamine solution (200 µM dopamine + 100 µM sodium 
metabisulfite to minimize oxidation69, prepared in saline) on a daily 
basis, using a frozen stock of 100 mM dopamine in 50 mM sodium 
metabisulfite in water. ATP solutions and dopamine solutions were 
bubbled with 95% O2 and 5% CO2 before application.

To verify the timing of ExR2 activation using ATP, we carried out 
whole-cell current-clamp recordings from ExR2 neurons (Fig. 2a), using 
the same ATP protocol, the same ExR2 LexA driver line and the same 
LexAop-P2X2 effector transgenes that we used in our EPG electrophysi-
ology experiments. This comparison was only possible in electrophysi-
ology experiments because the highly specific ExR2 driver line used to 
drive P2X2 expression did not drive enough jGCaMP7f expression for 
high-quality two-photon imaging from ExR2 neurons.

Chrimson stimulation
Flies expressing Chrimson70 were raised for all of development on 
Nutri-Fly “German Food” Sick Fly Formulation no. 66-115 (Genesee) con-
taining about 0.6 mM all-trans retinal (Sigma) and tegosept anti-fungal 
agent. Fly vials were wrapped in foil to prevent photo-conversion of 
the all-trans retinal. For optogenetic stimulation, we used the Hg-lamp 
source (U-LH100HG) to deliver pulses of orange light (590–650 nm, 
2–3 mW, Cy5 long-pass filter cube (49019, Chroma) through the objec-
tive. A shutter (Uniblitz Electronic) controlled the pulse pattern (0.5 s 



on, 1 s off) that was paired with the visual presentation of a bright ver-
tical bar that rotated around the fly in the same manner as described 
below for all other electrophysiology experiments.

Visual panorama
Visual stimuli were presented to the fly using a circular panorama (IORo-
deo) made of modular square panels71 as previously described28. Each 
square panel was made up of an 8 × 8 array of LEDs (8 × 8 ‘pixels’) that 
refresh at 372 Hz or faster71. For electrophysiology experiments, these 
LEDs were green (LED peak = 525 nm). In imaging experiments, these 
LEDs were blue (LED peak = 470 nm) to minimize overlap with GCaMP 
emission spectra.

For electrophysiology experiments, we used a panorama that 
spanned 270° in azimuth; the panorama covered the azimuthal range 
from about 124° left of the midline to about 147° right of the midline 
(that is, it was slightly asymmetric). For imaging experiments, we used 
a 360° panorama, with one square panel behind the fly removed for 
camera positioning. The visual panoramas spanned about 43° verti-
cally of the fly’s visual field and a single LED pixel along the top of the 
arena subtended about 3.6–3.7° of the fly’s visual field.

In electrophysiology experiments, to reduce electrical noise, the 
panorama was wrapped with grounded copper mesh. To reduce reflec-
tions, the mesh was covered with black ink, and the front surface of 
each panel was covered with a diffuser (SXF-0600 Snow White Light 
Diffuser, Decorative Films). In imaging experiments, five layers of filters 
(Rosco R381, bandpass centre 440, full-width at half-maximum 40 nm) 
were placed in front of the panels to minimize detection of the visual 
stimulus by the GCaMP emission collection channel. Analog output 
signals from the visual panel system were digitized with a NiDAQ PCI-
6251 (National Instruments) at 20 kHz (electrophysiology) or with a 
NiDAQ PCI-6341 (National Instruments) at 40 kHz (calcium imaging).

Visual stimuli
The visual cue was a bright vertical bar (2 pixels wide, 7°) that spanned 
the full height of the panorama (about 43°). For open-loop trials, the bar 
was rotated continuously around the fly at about 18° s−1 in the rightward 
direction. In imaging experiments with the 360° arena, the top half of 
the bar was ‘jumped’ over the missing panel directly behind the fly to 
maintain a constant total luminance within the arena at all times. For 
the closed-loop training period described in Fig. 4, the angular posi-
tion voltage signal from FicTrac 2.1 was used to continuously update 
the azimuthal position of the visual cue displayed on the panorama. 
Thus, when the ball rotated rightwards (indicating an attempted left-
ward rotational manoeuvre by the fly), the visual cue rotated right-
wards at the same velocity. For the optic flow stimulus in Fig. 1f, we 
presented a 360° vertical grating consisting of alternating 7° dark and 
light stripes. The grating appeared on the screen and remained static 
for 4 s before starting a about 18° s−1 leftward or rightward rotation, to 
isolate responses to the optic flow from any responses to the appear-
ance of the grating. On average, the appearance of the vertical grat-
ing produced a relatively small transient ExR2 response (ΔF/F ≈ 0.4, 
not shown). The grating rotated for 4 s before disappearing, and ΔF/F 
responses were measured in the last 2 s of this stimulus period. The 
analog output signals from the visual panel system and from FicTrac 2.1 
were digitized with a NiDAQ PCI-6341 (National Instruments) at 40 kHz. 
A visual cue position of 0° means the cue is directly in front of the fly.

Connectome analysis
To analyse the proximity of ExR2 output sites to ER-to-EPG neuron 
synapses, we analysed a partial connectome of the dorsal part of the 
right central brain of an adult female fly obtained by the FlyEM project 
at Janelia Research Campus (https://janelia.org/project-team/flyem/
hemibrain)57. Analysis was carried out in R using the neuprintr exten-
sion72 of neuprint73. ExR2, ER and EPG annotations were taken from the 
hemibrain v1.2.1 release. We calculated the Euclidean distance between 

each ER-to-EPG neuron pre-synapse and the ExR2 release site that is 
closest to that pre-synapse. Analysis was restricted to synapses within 
the ellipsoid body neuropil region. The boundaries of the ellipsoid body 
and other neuropil regions (Extended Data Fig. 1) were extracted from 
the hemibrain dataset.

Our analysis of mushroom body synapses (Extended Data Fig. 1) 
focused on Kenyon cells (KCs), mushroom body output neurons 
(MBONs) and mushroom body dopamine neurons (MB-DANs). We 
calculated the Euclidean distance between each KC-to-MBON synapse 
and its closest MB-DAN output synapse. This analysis was restricted to 
neurons on the right side of the brain with clear compartmentalization 
in the gamma lobe of the mushroom body. Our results of mushroom 
body synapses are consistent with those of a previous analysis74.

Data analysis
Data analysis was carried out using Matlab R2016b, R2017a, R2017b, 
2019b, R2020b (MathWorks), Python 3.9.5, R 4.1.0 and RStudio 1.4.1717. 
Throughout the figures, statistical tests are summarized as follows: NS, 
P > 0.05; *P < 0.05; **P < 0.01; ***P < 0.0005.

Calcium imaging alignment and data processing. Rigid motion 
correction in the x and y axes was carried out for each acquisition 
using the NoRMCorre algorithm75. Volumetric regions of interest 
(ROIs) were defined by combining 2D ROIs drawn in multiple imag-
ing planes. Fluorescence values for each ROI were determined by 
averaging all pixels in that volumetric ROI. All fluorescence data were 
smoothed with a Gaussian kernel 600 ms in width before analysis. For 
ExR2 imaging (Fig. 1), ROIs were drawn throughout the ellipsoid body 
(EB) and the left and right bulbs. ROIs from the EB and the left and 
right bulbs were combined for analysis to improve the signal-to-noise 
ratio. For EPG imaging, 16 volumetric ROIs corresponding to the 16 
glomeruli in the protocerebral bridge were defined on the basis of 
visible anatomical boundaries. ROIs of EPG neurons from the left 
and right hemispheres that occupy the same part of the EB were then 
combined to create one ROI for each of the eight EB wedges. To calcu-
late the time-dependent change in fluorescence (ΔF/F) for each ROI, 
we used a baseline fluorescence (F) defined as the fifth percentile of 
raw fluorescence values for that ROI throughout the entire experi-
ment. For the optic flow analysis in Fig. 1f, fluorescence in an empty 
background ROI was subtracted from fluorescence in the ExR2 ROI, 
to adjust for any light from the visual panels that was picked up by the 
photomultiplier tube during imaging. For that analysis, ΔF/F was cal-
culated using the mean fluorescence from the 2 s before the stimulus 
onset as the baseline F.

ExR2 locomotor correlations. The displacement of the spherical tread-
mill was computed by FicTrac 2.1 (ref. 68) in each of the three axes of 
rotation at about 60 Hz. This was then used to calculate forward and 
rotational speeds of the fly at each time point. Speed data were down-
sampled to match the volume rate of the imaging data and smoothed 
10 times with a Gaussian kernel 60 ms in width. Finally, the speed data 
were shifted back in time by two imaging volumes (about 300 ms), 
because this maximized the correlation between the two signals. In 
the example traces shown in Fig. 1b, the speed traces were smoothed 
one additional time with a Gaussian kernel 600 ms in width after down-
sampling and were not shifted in time. For the binned rotational speed 
analysis (Fig. 1c), all of the ΔF/F data for a given experiment were divided 
into 45 speed bins, and the mean ΔF/F within each bin was calculated. 
Bin widths and edges were chosen so that each bin contained the same 
number of data points. For the binned 2D speed analysis (Fig. 1d), speed 
and ΔF/F from all experiments were combined and then divided into 
bins on the basis of 2D speed. The bins in this analysis had a uniform 
size in each speed axis, meaning that the number of data points per bin 
was not uniform across bins. The grey shading in Fig. 1d shows the range 
of very low rotational speeds that occur during transitions between 
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resting and moving; all of these speeds (including rest periods and 
rest–move transitions) were included in our analyses. In a subset of 
experiments, the same analysis was carried out on trials in which the 
visual cue was rotated around the fly in an open loop (Extended Data 
Fig. 4b), and for separate experiments the equivalent analysis was car-
ried out with the same cue in a closed loop (Extended Data Fig. 4a). A line 
was fitted to the portion of each of the resulting curves with rotational 
speeds greater than 30° s−1 using Matlab’s fitlm() function. To gener-
ate the plots in Extended Data Fig. 3a, ROIs were drawn around ExR2 
neurites in the left and right lateral accessory lobes, and ΔF/F was cal-
culated as described above. Correlation coefficients between the fly’s 
rotational speed and ExR2 activity in each ROI were calculated using 
Matlab’s corrcoef() function. Only epochs in which the fly was moving 
(rotational speed >15° s−1 or forward speed >2 mm s−1) were included 
in the analysis. The plots in Extended Data Fig. 3b were generated us-
ing data from two different 5-min epochs during a single recording, 
with a 5-min gap between them. The correlation between rotational 
speed and ExR2 activity was calculated as described above, and the 
resulting coefficients were smoothed with a 2D Gaussian kernel (σ = 1.5) 
and manually thresholded to show only the pixels with the strongest 
positive and negative correlations. Background (greyscale) images in 
Extended Data Fig. 3b show trial-averaged fluorescence from these 
same five imaging planes.

Linear model analysis. Forward and rotational speed data were pro-
cessed as described above, and then z-scored and used as predictor 
variables. Fluorescence data were z-scored and used as the dependent 
variable. For each experiment, two regression models were fitted using 
Matlab’s fitlm() function, one using only rotational speed as a predictor 
variable, and one using both forward and rotational speed. Adjusted 
R2 values were obtained from the output of the fitlm() function; note 
that all of these R2 values are adjusted for the degrees of freedom in 
the model fit, which allows us to compare the explanatory powers of 
models having different numbers of free parameters.

Visual learning network model. Our model was a modified version 
of a published model29 (https://research.janelia.org/jayaraman/Kim_
etal_Nature2019_Downloads). In this model, the dynamics of the EPG 
population are given by
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in which [𝑥]+ denotes that we are taking the non-negative values of 𝑥, 
fn is the activity of EPG neuron n, τ is a decay time constant (50 ms), a 
is the strength of self-excitation, D is the strength of excitation from 
neighbouring neurons, β is the strength of global inhibition, and v is a 
rotational velocity signal that can be positive (rightward rotation) or 
negative (leftward rotation). In is the inhibitory visual input to EPG 
neuron n:

∑I w g= − (2)n m n m m,

in which wn,m is the strength of the synapse from visual neuron m onto 
EPG neuron n, and gm is the activity of visual neuron m. Weights are 
constrained to the range [0 0.33] and visual neuron activity is con-
strained to the range of [0 0.35]. Note that I ≤ 0n , as the vectors w and 
g contain only non-negative values. Ensemble visual neuron activity g 
was modelled as a von Mises function (κ = 15) over 1D azimuthal space, 
with the minimal value of gm set to zero. To simulate visual noise, we 
generate random samples from a uniform distribution over the range 
[0, 0.5gmax] and then apply temporal smoothing (box-car averaging 
over 80 ms); this noisy fluctuation was then added to In. The Hebbian 
learning rule at visual synapses onto EPG neurons was assumed to be 

postsynaptically gated, meaning that learning can occur only at syn-
apses onto active EPG neurons:
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in which wmax = 0.33, g0 = 0.33 and η is the learning rate (see below for 
more details). The first term (η[fn]+ (wmax − wn,m)) can be interpreted as 
nonassociative long-term potentiation that depends on postsynaptic 
activity, whereas the second term (η[fn]+ wmaxgm/g0) can be interpreted 
as associative long-term depression that depends on the conjunction of 
presynaptic and postsynaptic activity. All elements of the model noted 
thus far are identical to one of the model variants in ref. 29.

Taking this framework as a starting point, we then modified the 
model of ref. 29 in several ways. First, as the input to the model, we used 
rotational velocity data that we recorded from flies walking on a spher-
ical treadmill in a virtual environment with a single visual cue (that is, 
the same closed-loop visual cue that we use in the training period in 
Fig. 4). For each model run, we combined nine different 5-min epochs 
of rotational velocity data in a random order. These rotational velocity 
values from our data were taken as the time-varying parameter v; they 
were also used to shift the bump of activity in the visual neuron popu-
lation (that is, they were used to shift the von Mises function across 
azimuthal space). We used a time step length of 16.1 ms for our simula-
tion to match the sampling rate of the rotational velocity data.

Next, we scaled the synaptic learning rate η at each time point so that 
it was linearly dependent on the fly’s rotational speed; this choice was 
motivated by our finding that the activity of ExR2 dopamine neurons 
is quasi-linearly dependent on the fly’s rotational speed (Fig. 1c). We 
refer to this as an adaptive learning rate. Note that our formulation 
(η = |0.5v|) is different from that of ref. 29 (η = 0.5v2).

Finally, we re-ran all of the simulations with the same behavioural 
data sequences as inputs, but now setting the learning rate η to a fixed 
value, obtained by taking the mean value of η throughout the training 
period in the adaptive learning models. Choosing this fixed value for 
η matched the total amount of learning across the two conditions. 
After the training was complete, we calculated the circular correla-
tion between the population vector averages (PVAs) of the synaptic 
weights of each EPG neuron and each ER neuron at each time step, 
using a published method76. Circular correlation was computed over 
3,000 s of simulation time; the mean value reported is the mean of 
117 simulations (trained on shuffled blocks of behavioural data) ± 95% 
confidence interval (1,000 bootstrap resamples).

Equation (3) represents the postsynaptically gated learning rule that 
is the focus of ref. 29. In separate simulations, we also implemented the 
presynaptically gated learning rule of ref. 29, and we confirmed that our 
conclusions are the same. Specifically, adding an adaptive learning rate 
can have the same effect. The only difference is that, for the presynap-
tically gated learning rule, the overall weight structure is slightly less 
uniform (that is, there is a slightly lower correlation between the PVA 
of ER output weights and EPG input weights).

For the analysis in Extended Data Fig. 5, the final weights of 16 simula-
tions were taken as initial weights, and 3 replicates of these 16 simula-
tions were continued for another 3,000 s of simulation time, but with 
Gaussian noise added to the synaptic weight matrices at each time 
step. The first two replicates used the synaptic learning rules described 
above, whereas the third had no synaptic learning at all.

EPG ensemble responses to ExR2 activation or hyperpolarization. In 
Figs. 3 and 4, ΔF/F data for each EB wedge were calculated as described 
above. The PVA was calculated by converting the ΔF/F data for each 
wedge into a vector with a direction based on the wedge’s position in 
the EB, and then adding those vectors to obtain the PVA for each time 
point. We then computed the circular distance between the cue and the 
PVA position for each time point; we refer to this as the ‘offset’ between 
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cue position and the bump position77. We computed bump amplitude 
for each time point by taking the difference between the minimum and 
maximum ΔF/F across all eight EB wedges.

Mutual information between the PVA and the visual cue was esti-
mated using a published method78 with k = 3 nearest neighbours, using 
the Python implementation from that reference; see also ref. 79. For 
Fig. 3c, mutual information was estimated using the time points within 
each individual rotation of the visual cue around the fly. For Fig. 3d, 
the estimate used all time points in the baseline or post-ExR2 activa-
tion periods (as indicated in Fig. 3c). For Fig. 4c, mutual information 
was estimated for each fly using all time points within the open-loop 
test period.

Time points when the cue was behind the fly (at positions between 
150° and 210°) were excluded from the calculations of offset and mutual 
information because the fly should have been unable to see the cue 
during these time points; including these data did not change the con-
clusion from either analysis.

Correlating bump amplitude and locomotor speed. In Fig. 4e and 
Extended Data Fig. 9c, speed data were collected through FicTrac 2.1 
(ref. 68) at about 60 Hz, downsampled to the imaging data volume 
rate, smoothed 10 times with a Gaussian kernel 60 ms in width, and 
shifted back 2 imaging volumes (about 300 ms) in time to maximize 
correlation between the signals. Bump amplitude was calculated as  
maximum − minimum ΔF/F across all eight EB wedges at each time 
point, and then smoothed with a Gaussian kernel 600 ms in width. Then, 
for each fly, bump amplitude was z-scored and binned according to the 
fly’s rotational speed at each time point; and the mean bump amplitude 
was then calculated within each bin. Bin edges were the same for each fly 
and were chosen so that the number of samples in each bin was the same 
after aggregating data across flies. Time points with rotational speeds 
exceeding 100° s−1 (<3% of the total samples) were excluded from the 
analysis to ensure consistency across flies, because some individuals 
had higher walking speeds than others. For Fig. 4e and Extended Data 
Fig. 9c, the Pearson correlation coefficient between bump amplitude 
and rotational speed throughout the entire training and test period 
was calculated in Matlab using the corrcoef() function.

Whole-cell recording EPG neuron visual tuning. To describe the 
preferred cue position of an EPG neuron based on its membrane volt-
age, we computed its vector phase for each full cue rotation using the 
following equation80:

( )∑ ∑V θ V θvector phase = atan2 sin cos (4)
n θ n θ

in which the cue position (θ) ranges from 0 to 360° and Vθ is the mem-
brane voltage at a given stimulus angle. To adapt this analysis to the 270° 
azimuthal extent of the visual panorama used in our electrophysiology 
experiments, θ was obtained by rescaling and shifting cue positions 
from −123.75°–146.25° to 0–360°. The cell’s preferred cue position was 
then obtained by rescaling and shifting the calculated vector phase to 
the range [−123.75, +146.25°]. To determine the preferred cue position 
based on EPG spiking (Extended Data Fig. 6e), we calculated the vector 
phase as follows:

( )∑ ∑θ θvector phase = atan2 sin cos (5)
n n

in which θ is the list of cue positions that were present at the time of 
a spike.

In Fig. 2d, the circular standard deviation of the preferred cue posi-
tion was calculated over a pre-stimulus-window (−11 min to −1.5 min) 
and a post-stimulus window (3 min to 12.5 min). Changes in preferred 
cue position tuning for each cell were assessed using the parametric 

Watson–Williams multi-sample test (implemented through circ_wwtest 
in Matlab77), with Bonferroni correction. Specifically, we compared the 
preferred cue position values in a pre-stimulus window (−3.5 min to 
−1.5 min) to the preferred cue position values in a post-stimulus window 
(3 min to 5 min), as shown in Fig. 2c. We chose windows that are relatively 
narrow and closely spaced to minimize the contribution of the slow 
representational drift in the EPG ensemble that occurs even in control 
experiments over long time intervals. This drift is clearly distinct from 
the abrupt changes in preferred cue position that often accompany 
ExR2 stimulation or dopamine application, as shown in Fig. 2c. A small 
subset of cells were not significantly tuned to the visual cue position 
in the baseline period before ExR2 application or dopamine applica-
tion (that is, they did not pass the Rayleigh test for uniformity with a 
threshold of P = 0.05). These cells were excluded from further statistical 
analysis of change in preferred cue position because the preferred cue 
position is not a meaningful value if there is no baseline tuning. For ExR2 
activation, 11 cells were recorded, and of these, 2 cells were excluded 
for non-significant baseline tuning, and 6 out of the 9 remaining cells 
showed significant changes in preferred cue position after ExR2 activa-
tion (Bonferroni-corrected P = 1.9 × 10−14, 4.4 × 10−14, 1.3 × 10−9, 6.6 × 10−5, 
0.0018, 0.011, 4.15, 4.51, 7.99). For the control genotype, 10 cells were 
recorded, 0 cells were excluded, and 0 cells showed significant changes 
in preferred cue position after ATP application (Bonferroni-corrected 
P = 0.064, 0.33, 0.56, 0.57, 1.95, 5.49, 6.26, 6.62, 6.99, 7.15). For dopamine 
application, 12 cells were recorded, and of these, 1 cell was excluded 
for non-significant baseline tuning, and 3 out of the remaining 11 cells 
showed significant changes in preferred cue position after dopamine 
application (Bonferroni-corrected P = 0.0066, 0.044, 0.045, 0.097, 1.17, 
1.84, 1.86, 5.08, 5.70, 4.22, 6.89). Example cells 3, 4 and 5 that are shown 
in Fig. 2c showed significant changes in mean preferred cue position, 
whereas example cells 1, 2 and 6 did not.

Extended Data Figure 7 shows the changes in preferred cue position 
for every cell, including the three with non-significant baseline tuning. 
The three cells that failed the Rayleigh test were not excluded from any 
other analyses, because no other analyses would be confounded by the 
lack of baseline tuning in these cells.

For Fig. 2e,f and Extended Data Fig. 6a,b,f, the cell’s visual response 
amplitude was computed by smoothing the membrane voltage using a 
third-order median filter with a 100-ms window (medfilt1() Matlab func-
tion), and then subtracting the minimum voltage from the maximum 
voltage on each cue rotation cycle. This voltage difference was reported 
directly (Fig. 2b and Extended Data Fig. 6a) or normalized to the mean 
response during a baseline period (Fig. 2e,f and Extended Data Fig. 6f; 
−3.5 to −1.5 min), or reported as post − pre (Extended Data Fig. 6b; pre 
is −3.5 min to −1.5 min; post is 4 min to 6 min). Mean responses across 
cells were calculated by taking the mean of all the single-cell measure-
ments in bins of 40 s.

For Extended Data Fig. 8, the cycle-by-cycle circular standard devia-
tion and visual response amplitude were calculated for the full 2-min 
trials that preceded or followed the optogenetic stimulus in the same 
manner as described above. Response amplitude was calculated by 
taking the mean voltage for each cue position across the eight cue 
rotations per trial and subtracting the maximum voltage from the 
minimum voltage.

ExR2 and EPG spiking. ExR2 and EPG spikes were detected from 
whole-cell recordings by a custom-written Matlab script. To detect 
ExR2 spikes, first the raw voltage was multiplied by −1 and low-pass 
filtered with a digital Butterworth filter using a cutoff frequency chosen 
by the user. Then, the derivative was taken of this filtered signal. We 
detected peaks in the derivative trace that passed above a user-chosen 
threshold, were wider than 2.5 ms, and followed the preceding peak by 
more than 2 ms. Values of the cutoff frequency for the low-pass filter and 
the differentiated peak threshold were chosen for each cell empirically. 
The peristimulus time histograms of spike rate were calculated using 
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a bin size of 5 s. Mean baseline firing rates for each cell were as follows: 
0.28, 0.26, 0.04, 0.52 and 0.02 Hz. Automatic EPG spike identification 
(Extended Data Fig. 6c,e) was based on the detection of transients in the 
current output from the Axopatch 200B amplifier81; these transients 
were counted as spikes if a fluctuation wider than 1.5 ms occurred in 
the voltage channel within 1.5 ms of that sample, and if the peak volt-
age during that fluctuation was in the top 15% of values for that trial.

Data inclusion
In one imaging experiment, an air bubble formed near the laser path 
soon after the beginning of the experiment (confirmed by eye with 
light microscopy at the end of the experiment), resulting in a marked 
reduction in brightness and signal-to-noise ratio, so this experiment 
was excluded from analysis.

For electrophysiology, cells were considered healthy and included 
in the analysis if their voltage was below −30 mV. For pharmacology 
experiments, the cell’s membrane voltage needed to remain healthy 
until 11 min into the treatment period to be analysed. If cells became 
more depolarized than −30 mV following this time point that data were 
excluded from analysis.

As previously reported28, EPG neuron electrophysiological record-
ings occasionally exhibit large inhibitory postsynaptic potentials with a 
stereotyped sharp onset, a large amplitude (>10 mV) and a stereotyped 
time course. They are followed by a prolonged period of depolarization 
when the variance of the voltage trace is also diminished. These inhibi-
tory events interfered with visual tuning measurements, and so for Fig. 2 
and Extended Data Figs. 6–8, if an event occurred it was clipped out. 
Such clipping was required for 12% of trials. For one cell (fly 543, cell 
1), the first 12 s of the first baseline trial had too much holding current 
applied. Those 12 s were also excluded from the analysis.

Statistics and sample sizes
Normality was evaluated with a Kolmogorov–Smirnov test or a Shap-
iro–Wilk test with α = 0.05. In cases when our data were not normally 
distributed, a nonparametric test was used. To analyse circular vari-
ables, we used statistical tests for circular statistics from the Matlab 
toolbox CircStat77. Sample sizes were chosen on the basis of standard 
sample sizes in the field.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The hemibrain v1.2.1 connectome data are available at https://neuprint.
janelia.org (also at https://doi.org/10.25378/janelia.11676099.v2). The 
datasets generated during the current study are available from the 
corresponding author on reasonable request.

Code availability
Custom code is available at https://doi.org/10.5281/zenodo.6998346. 
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Extended Data Fig. 1 | Proximity of ExR2 dopamine release sites to ER→EPG 
synapses. All data in this figure originate from the ‘hemibrain’ large-scale 
serial section electron microscopy dataset57. a) Total number of synaptic 
contacts from ExR2 neurons onto EPG neurons and ER neurons. b) Schematic 
of dopamine spillover. Work in the Drosophila mushroom body has suggested 
that dopamine can act on synapses up to ~3 µm away from its sites of release74. 
This motivated us to count ER→EPG synapses <3 µm from an ExR2 release site; 
here we consider all ExR2 release sites, regardless of the postsynaptic cell. This 
analysis assumes that plasticity at ER→EPG synapses is regulated by dopamine 
receptors residing at or near the synapse, rather than dopamine receptors 
elsewhere in ER or EPG neurons. c) Skeleton of one EPG neuron and one ER 
neuron (ER2a subtype). Gray regions show neuropil boundaries. ER→EPG 
synapses between these two neurons are shown in gold. Bottom images show 
the ellipsoid body at an enlarged scale. Nearby ExR2 release sites are in blue 

(<3 µm from a gold site). Arrows denote cell body locations. d) Skeleton of one 
ExR2 neuron. There are four ExR2 neurons in total (two in each hemisphere), 
and the blue release sites come from all four of these neurons. At right is an 
overlay of the example cells shown in (c). Arrow denotes ExR2 cell body 
location. e) Cumulative probability histogram of Euclidean distances from all 
visual ER→EPG synapses to the closest ExR2 release site. We define “visual ER 
neurons” as subtypes ER2a, ER2b, ER2c, ER2d and ER4d25,32,82. f) Cumulative 
probability histogram of distances in the mushroom body γ lobe from Kenyon 
cell → mushroom body output neuron synapses (KC→MBON synapses) to the 
closest mushroom body dopamine neuron (MB-DAN) release sites. Note that 
the proximity of dopamine release sites to KC→MBON synapses is similar to the 
proximity of release sites to ER→EPG synapses. See also ref. 74. g) Cumulative 
probability histogram of the distance from each ER→EPG synapse to its closest 
ExR2 release site, plotted separately for each ER subtype.
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Extended Data Fig. 2 | Rotational speed tuning in ExR2 dopamine neurons. 
a) Mean ExR2 ΔF/F versus rotational and forward speed for two example flies. 
Data are binned by speed and averaged over time points. Gray bins are empty. 
Figure 1d shows the average over all time points for all flies. b) Mean forward 
speed versus rotational speed for the combined behavioral data of all 13 flies in 
Fig. 1c–f. Data are binned by rotational speed and then averaged across time 
samples. Note that rotational and forward speed are positively correlated for 
rotational speeds <100 °/s. c) Cumulative histogram of rotational speed data 
from this data set. Note that rotational speed <100 °/s for the large majority of 
time points; thus, rotational and forward speed are generally positively 
correlated. d) Pearson’s correlation coefficient between ExR2 ΔF/F and 
rotational or forward speed. Each set of connected dots represents an 
individual fly (n = 13); horizontal lines are mean values. ExR2 activity is more 
correlated with rotational speed than with forward speed (p = 0.0002, 
two-sided Wilcoxon signed rank test). The positive correlation with forward 

speed is expectable, based on the fact that rotational and forward speed are 
themselves correlated. e) Comparison of the explanatory power (adjusted R2 
values) of linear regression models that aim to predict ExR2 ΔF/F using 
rotational and forward speed, rotational speed only, and forward speed only.  
In Wilkinson notation, the model formula is ΔF/F ~ speedrotational + speedforward. 
Each set of connected dots represents an individual fly; horizontal lines are 
means (n = 13 flies). Models were fit separately for each fly. Models that used 
only forward speed as a predictor variable performed significantly worse than 
those that used rotational speed (p = 3.1 × 10−5), and models that used both 
forward and rotational speed performed better than those using rotational 
speed alone (p = 0.04, one-way repeated measures ANOVA with Tukey post hoc 
test). However, the incremental benefit of adding forward speed was small, 
implying that forward speed is mainly predictive of ExR2 activity simply 
because it is predictive of rotational speed.



Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | Lateralized ExR2 responses to rotational movements. 
a) Left: Skeleton of one ExR2 neuron (from the hemibrain dataset) overlaid with 
a mirrored version of the same skeleton. Note that the LAL dendritic arbor is 
mainly ipsilateral (not bilateral); therefore, we analyzed ExR2 GCaMP7f 
fluorescence in the LAL to compare the velocity tuning of the left and right 
copies of ExR2. There are four ExR2 neurons in total (2 cell bodies in each 
hemisphere). Right: Pearson’s correlation between ExR2 ΔF/F in the LAL and 
the fly’s rotational velocity. Rotational velocity is defined as positive for 
rightward turning and negative for leftward turning (as distinct from rotational 
speed, i.e. the absolute value of rotational velocity, which is strictly non-
negative). This analysis shows that ExR2 signals are correlated with rotational 
velocity in the ipsilateral direction, and the right-left difference in ExR2 activity 
is significantly correlated with the fly’s rotational velocity (correlation 
significantly different from zero, p = 1.8 × 10−7, two-sided one-sample t-test). 
Each fly contributes one data point per condition (n = 13 flies). b) Pearson’s 

correlation with rotational velocity overlaid on raw fluorescence images 
acquired at 5 different horizontal planes through the same brain, for two 
different 5-minute trials with a 5-minute period between them. Scale bar is 
20 µm. Correlation coefficients are represented by a blue-to-red colormap, 
with R > 0 in blue and R < 0 in red, with stronger absolute correlations having 
more saturated color values. Correlation values are only shown for the pixels 
with the strongest correlations (top 15% of absolute correlation values). Note 
that many pixels have consistent tuning across the two trials. Pixels with 
positive and negative correlations are likely to arise from the right and left 
copies of ExR2, respectively. This analysis demonstrates that the direction-
selectivity we see in the LAL arbors is preserved in the EB and BU arbors of these 
cells. If dopamine release from each ExR2 neuron is proportional to the fly’s 
ipsilateral rotational velocity, then total (summed) dopamine release in the EB 
should be proportional to the fly’s rotational speed.



Extended Data Fig. 4 | Small ExR2 responses to the movement of a visual 
object. a) We placed flies in a virtual reality environment with a visual cue 
which rotated around the fly in closed loop with its rotational velocity on the 
spherical treadmill. In an environment with this type of visual cue, EPG neurons 
track the fly’s head direction more accurately than they do in darkness27; here 
we ask whether this type of cue affects ExR2 activity also. Left: mean ExR2 ΔF/F 
versus the fly’s rotational speed for 8 example flies. Right: slopes and 
y-intercept of lines fit to the data for each fly in the linear portion of each curve 
(rotational speeds >30°/sec), with one data point per fly. In the epochs with the 
visual cue, slopes were significantly smaller and intercepts were larger, 
compared to epochs of darkness in the same experiments (slope: p = 6.3 × 10−5, 
intercept: p = 0.0004, two-sided paired t-tests with Bonferroni correction, 
n = 29 flies). This indicates that the visual cue boosts ExR2 activity for low 
rotational speeds; however, the magnitude of this effect is very small. These 
results are consistent with the fact that ExR2 neurons respond to optic flow 
(Fig. 1f), and the movements of the cue produce a small amount of optic flow. b) 
We also tested the effect of jumping the visual cue by 90° during these 
closed-loop epochs; we found that this produced a very small and transient 
ExR2 response, which is likely due to the small transient increase in optic flow 

that the cue jump produces (compare with Fig. 1f). Shown here is the average 
response from a typical example fly (mean of 11 trials ± SEM). To assess the 
effect of the cue jump, we analyzed only those trials where the fly happened to 
be standing immobile for several seconds before and after the jump, in order to 
avoid confounds associated with jump-induced behaviors. c) Here we compare 
epochs of walking in darkness with epochs of open-loop cue rotation at 
constant velocity (with the same cue velocity used in Figs. 2, 3, and 4, i.e. ~18°/s). 
Left: mean ExR2 ΔF/F versus the fly’s rotational speed for 8 example flies. Data 
are binned by rotational speed and averaged across time points. Right: slope 
and y-intercept of lines fit to the data for each fly in the linear portion of the 
curves (rotational speeds >30°/s). Visual cue rotation at constant velocity had 
no significant effect on the relationship between ExR2 activity and the fly’s 
rotational speed (slope: p = 0.87, y-intercept: p = 0.15, two-sided paired t-tests 
with Bonferroni correction, n = 11 flies). However, this data set shows a small 
trend in the same direction as what we observed in the closed-loop case; 
because there are fewer replicates here, there is less statistical power. The main 
result of this experiment is simply that we find no evidence that open-loop cue 
movement produces any larger response than closed-loop cue movement 
does. The flies in this panel are the same as those shown in Fig. 1c–f.
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Extended Data Fig. 5 | Model illustrating the effect of synaptic plasticity in 
combating synaptic weight noise. Here we began with weights from the end 
of a typical model run with an adaptive learning rate (“dopamine”). As before, 
the input to the model was a temporal sequence of visual cue positions and 
associated rotational velocities, taken from our behavior data (as shown in 
Fig. 1g). At each time step, we then made small random changes to individual 
synaptic weights. These random changes could represent (for example) 
fluctuations in the numbers of presynaptic calcium channels or postsynaptic 
neurotransmitter receptors. If the Hebbian learning rule continues to operate, 
with the adaptive learning rate (“dopamine”), then as the fly continues to walk 
and sample the visual environment, the effects of these small random changes 
are erased, and the synaptic weight pattern is preserved. But without 

dopamine, the synaptic weight pattern degrades, because the fly often orients 
in a fixed direction for long periods, and so over-learns the retinotopic cue 
location that is associated with that direction. Finally, if learning is turned off, 
synaptic weights degrade very rapidly, because the random synaptic weight 
changes accumulate without any correction. The plot shows the mean circular 
correlation between the population vector average of ER output weights and 
EPG input weights; mean (n = 16 simulations trained on shuffled data) ± 95% 
confidence interval. At the end of the simulation, all pairwise comparisons 
between conditions are significantly different (normal learning vs. fixed rate 
learning: p = 0.0004; normal learning vs. no learning: p = 0.0004; fixed rate 
learning vs. no learning: p = 0.0006; two-sided Wilcoxon sign rank tests with 
Bonferroni correction).



Extended Data Fig. 6 | Additional examples of visual response changes and 
spiking in EPG neurons. a) Example EPG neuron responding to a rotating 
visual cue, recorded in whole-cell mode. For each stimulus cycle, we measured 
the neuron’s preferred cue position and its response amplitude (max - min 
membrane potential). Insets show membrane potential on an expanded 
timescale. In this EPG neuron, ExR2 activation produced a relatively 
long-lasting increase in visual cue response amplitude, whereas the increase 
was more transient in the example EPG neuron in Fig. 2b. b) Across all recorded 
cells, the change in visual cue response amplitude was significantly higher after 
ExR2 activation, as compared to control experiments where ATP was applied 
but ExR2 neurons did not express P2X2 (p = 0.015, two-sample two-sided 
Wilcoxon rank sum test). Dots are individual cells (same cells as in Fig. 2); 
horizontal lines are means; n = 11 for ExR2 activation and n = 10 for control. 

Changes in visual cue response amplitude (post − pre) are measured in the time 
windows shown in Fig. 2e. c) Example EPG spike rate changes following ExR2 
activation during the rotation of a visual cue. In this EPG neuron, spikes are 
unambiguously identifiable, but that was not true in all recordings, because 
ExR2 activation causes an acute depolarization and a large (and often 
persistent) increase in visually-evoked EPG spike rates. Under these conditions, 
the EPG spike amplitude decreases, making spike identification uncertain in 
many recordings. d) Membrane voltage response for the same cell during the 
epoch as shown in (c). e) Analysis of spike rates for the same example cell in (c). 
Preferred cue position over time (left) and amplitude of the response to the 
visual cue (bottom). Each point is one stimulus cycle. f) Same but for membrane 
potential. The response amplitude is normalized to the cell’s baseline period.
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Extended Data Fig. 7 | Preferred visual cue positions of individual EPG 
neurons. a) Preferred visual cue position over time, for all EPG neurons 
single-cell recordings (Fig. 2b–f). Each color denotes a different cell (n = 11 for 
ExR2 activation, n = 10 for controls, n = 12 for dopamine). Preferred cue position 
was measured once per cue rotation cycle. To assess the significance of baseline 
tuning, we applied the Rayleigh test for non-uniformity to the entire baseline 
period, using the circ_rtest() function in Matlab77; two cells in the ExR2 
activation dataset and one cell in the dopamine dataset were not significantly 
tuned to visual cue position during the baseline period. These cells and the 
corresponding p-values are annotated above the plot (with p values from 
Rayleigh tests indicating the probability that the cell is untuned). Note that 
preferred cue positions tend to be biased toward +90° and −90°, and this bias 
becomes more prominent following ExR2 activation or dopamine treatment. 
This bias is probably inherited from visual ER neurons, which overrepresent 
these lateral positions32; as a result, many EPG neurons tend to receive 
disproportionate inhibition at these locations28, and thus they might be 

expected to receive disproportionate disinhibition at the opposite location 
(−90° and +90°, respectively). This bias should be less notable when the visual 
stimulus is reinforcing the internal self-motion inputs to the head direction 
system (i.e., motor efference and/or proprioceptive inputs35,36), because these 
self-motion inputs presumably do not exhibit any retinotopic bias. Accordingly, 
a recent study found a strong egocentric bias in butterfly head direction cells 
during passive viewing of a visual cue, but not when the butterfly’s steering 
movements were controlling the position of that same visual cue83. If the bias 
arises from the properties of visual ER neurons, then we might expect the bias to 
increase when the influence of the visual cue increases, and indeed this is what 
we observe when we pair the visual cue with ExR2 activation or dopamine 
treatment. b) Same as (a) but expressed as a change from the cell’s baseline 
average preferred cue position. c) Absolute value of the change in preferred cue 
position. Dots are single cells, line is mean. Cells without significant baseline 
tuning are included in this plot but excluded from all statistical analysis of single 
cell remapping. N values are the same as in (a).



Extended Data Fig. 8 | Effects of optogenetic ExR2 activation. a) Schematic 
of the experimental design. The voltage response of an EPG neuron to a 
rotating visual cue was obtained in whole cell recording mode, and visual 
tuning was measured in the pre- and post-activation periods by rotating a visual 
cue around the fly. During the activation period, orange light was pulsed to 
activate Chrimson-expressing ExR2 neurons while we continued to rotate the 
visual cue around the fly. We performed the same protocol in genetic controls 
where ExR2 neurons did not express Chrimson. In a separate set of controls, we 
used Chrimson-expressing ExR2 neurons but we turned off the visual cue 
during ExR2 activation. b) Preferred cue position and response amplitude 
(max - min membrane potential) for 3 example EPG neurons, pre and post ExR2 
activation with Chrimson; all these flies had the visual cue paired with ExR2 
activation. Each point is one stimulus cycle. c) Mean response amplitude, pre 
and post activation. P-values show results of Wilcoxon paired, two-sided rank 
tests. Results are similar to Fig. 2f (chemogenetic activation of ExR2). (n = 10 for 
no Chrimson, n = 18 ExR2 activation, n = 10 ExR2 activation with no cue). d) 
Changes in visual cue response amplitude. Horizontal lines are means. P-values 
show results of a two-sample two-sided Wilcoxon rank sum tests (n = 10 for no 
Chrimson, n = 18 ExR2 activation, n = 10 ExR2 activation with no cue). Results 
are similar to Extended Data Fig. 6b (chemogenetic activation of ExR2), 

although the absolute change in response amplitude is smaller than with 
chemogenetic activation. e) Standard deviation of prefered cue position, pre 
and post activation. P-values show results of Wilcoxon paired, two-sided rank 
tests (n = 10 for no Chrimson, n = 18 ExR2 activation, n = 10 ExR2 activation with 
no cue). Compared with Fig. 2d (chemogenetic activation of ExR2), the same 
trends are visible, although the effect of ExR2 activation falls short of statistical 
significance. This may be related to the fact that the absolute change in 
response amplitude was smaller with optogenetic activation than with 
chemogenetic activation. Overall, for ExR2 activation with Chrimson, 16 of 18 
cells were significantly tuned to cue position during the baseline (“pre”) 
period; of those, 3 changed their preferred cue position after we delivered 
orange light to activate ExR2 neurons. For the no Chrimson condition, 9 of 10 
cells were significantly tuned during the baseline period and 0 of those cells 
changed tuning after we delivered orange light. For the ExR2 activation with no 
cue condition, 10 of 10 cells were tuned during the baseline period and 2 
showed changes in tuning after we delivered orange light. Tuning during the 
baseline period was assessed with a Rayleigh test for non-uniformity (at the 
p > 0.05 criterion for significance). Changes in preferred cue position tuning 
were assessed using parametric Watson-Williams multi-sample tests with 
Bonferroni correction.
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Extended Data Fig. 9 | Effects of hyperpolarizing ExR2 dopamine neurons. 
a) Mean rotational speed (left), forward speed (center), and percentage of time 
spent locomoting (right) throughout the experiment, for both the control 
genotype and the genotype where ExR2 neurons express Kir2.1 (n = 20 control 
and 21 Kir2.1 flies throughout this figure). Dots are individual flies; horizontal 
lines are means. There was no significant difference between the two 
genotypes for any of these locomotor parameters (p = 0.81, p = 0.97, and 
p = 0.79, two-sided Wilcoxon rank sum test). In short, we find no evidence that 
ExR2 neuron hyperpolarization causes locomotor defects. b) EPG bump 
amplitude was not significantly different in the genotype where ExR2 neurons 
express Kir2.1 versus the control genotype (p = 0.76, two-sided two-sample 
t-test). c) Left: Data from two example flies from each genotype, showing a 
similar correlation between the bump rotational velocity and the fly rotational 
velocity. This result implies that hyperpolarizing ExR2 neurons does not impair 
the tendency of the bump to track the fly’s internal self-motion signals. Each 
data point is a time point. Right: Pearson’s correlation coefficient between 
bump rotational velocity and fly rotational velocity, for all flies. Note that these 
correlations are all relatively low, because they were all measured as the visual 
cue was rotating in open loop around the fly, and so internal self-motion signals 
were competing with visual cues for control of the bump. The visual cue has less 
influence when ExR2 neurons express Kir2.1 (Fig. 4c), and so it not surprising 

that there is a trend toward a larger relative influence of self-motion signals in 
the Kir2.1 flies (i.e., a slightly stronger correlation with the fly’s rotational 
velocity), although this trend was not significant (p = 0.28, two-sided 
two-sample t-test, n = 20 Kir2.1 flies and 20 control flies). The two example flies 
from each genotype both have relatively high correlations, but they are typical 
in having a fitted slope less than unity; this has been observed previously in 
flies walking in darkness27, and it suggests that the native gain of the EPG 
network is <1, i.e. the brain tends to underestimate the fly’s rotation on the 
spherical treadmill. d) EPG bump amplitude versus the fly’s rotational speed 
for both genotypes; data are binned by speed and averaged within a fly. Bump 
amplitudes are z-scored. Each line is an individual fly. Fig. 4D shows the 
mean±SEM within each genotype. e) Left: Pearson’s correlation coefficient 
between bump amplitude and forward speed throughout the experiment. Dots 
are flies; lines are means. In flies where ExR2 neurons express Kir2.1, this 
correlation is lower (p = 0.029, two sample t-test with Fisher transformation). 
Right: same but for rotational speed (p = 3.5 × 10−6, two-sided two sample t-test 
with Fisher transformation). This plot is reproduced from Fig. 4e for 
comparison. Note that the magnitude of correlation coefficient is stronger for 
rotational speed than for forward speed. Because forward speed and rotational 
speed are themselves correlated (Extended Data Fig. 2b), it is expected that 
bump amplitude would be at least weakly correlated with forward speed.
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